Module Information Course Information						
Module Title		Calculus I			le Delivery	
Module Type		Basic			🛛 Theory	
Module Code				Lecture Lab		
ECTS Credits				☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐		
SWL (hr/sem)	150				□ Practical □ Seminar	
Module Level		UGI	Semester o	f Deliver	Delivery 1	
Administering De	partment	OGE	College	Engine	Engineering	
Module Leader	Ahmed Adnan		e-mail	Ahmed.ad@uowa.edu.iq		q
Module Leader's	Acad. Title	Lecturer	Module Lea	ader's Qu	der's Qualification PHD	
Module Tutor	2		e-mail	E-mail		
Peer Reviewer Name Name		e-mail	E-mail			
Scientific Committee Approval Date		01/11/2023	Version Nu	mber	1.0	

Relation with other Modules				
Relationship with other subjects				
Prerequisite module	None	Semester		
Co-requisites module	None	Semester		

Module Aims, Learning Outcomes and Indicative Contents Course objectives, learning outcomes and instructional contents			
Module Aims Course Objectives	 1-Developing and strengthening students' problem-solving skills. In particular, students 2- Teaching them to read, write, speak, and think in the language of mathematics. 3- Learning how to apply calculus tools to a variety of problem situations. 		
Module Learning Outcomes	1- Developing and strengthening students' problem-solving skills. In particular, students		

	2- Teaching them to read, write, speak, and think in the language of mathematics.
Learning outcomes	3- Learning how to apply calculus tools to a variety of problem situations.
of the course	
	• The area of mathematics known as calculus is primarily concerned with limits,
	functions, derivatives, trigonometric functions, and infinite series. An important
	component of modern mathematics education in this subject. Using derivatives
	to solve related rates problems
	 Using derivatives to approximate points (linearization)
Indicative Contents	Evaluating limits using L'Hopital's law
Indicative Contents	Locating critical points using the first derivative
	 Identifying increasing/decreasing values using the first derivative
	 Locating critical points using the second derivative
	 Identifying concavity and inflection points using the second derivative
	 Using the first/second derivative tests to find local and global extrema
	Using derivatives to solve optimization problems

Learning and Teaching Strategies Learning and Teaching Strategies			
Strategies	 Give emphasis on conceptual understanding. Set challenging homework that expands on what you learned in class. Cooperative learning techniques should be used. Ask thoughtful questions. Concentrate on logical thinking and actual problem-solving. Use a variety of assessment methods. 		

Student Workload (SWL)					
The student's aca	The student's academic load is calculated for 15 weeks				
Structured SWL (h/sem)75Structured SWL (h/w)5Regular academic load of the student75Regular student load per week5during the semester7581000 per week5			5		
Unstructured SWL (h/sem)	72	Unstructured SWL (h/w) Irregular student academic load per week	5		

Irregular academic load of the student		
during the semester		
Total SWL (h/wk)		
The student's total academic load	150	
during the semester		

Module Evaluation Course Evaluation						
	Time/Nu Weight (Marks) Week Due Relevant Learning mber Outcome					
	Quizzes	2	10% (10)	5, 10	in #1, 2, 10 and 11	
Formative	Assignments	2	10% (10)	2, 12	in #3, 4, 6 and 7	
assessment	Projects /	1	10% (10)	Continuous	All	
	Report	1	10% (10)	13	in #5, 8 and 10	
Summative	Midterm Exam	2 hr	10% (10)	7	LO #1-7	
assessment	Final Exam	2hr	50% (50)	16	All	
Total assessment 100% (100 Marks)						

Delivery Plan (Weekly Syllabus)					
	Theoretical Weekly Curriculum				
	Material Covered				
Week 1	Exponential and logarithm functions				
Week 2	Application of Exponential and logarithm functions				
Week 3	The relationship between the Exponential function and the logarithm function				
Week 4	Trigonometric functions				
Week 5	The inverse of Trigonometric functions				
Week 6	Hyperbolic functions				
Week 7	The inverse of Hyperbolic functions				
Week 8	Derivative				
Week 9	Implicit differentiation				
Week 10	Maximum and Minimum using Derivatives				
Week 11	The logarithm functions derivative				
Week 12	Derivative of hyperbolic functions				

Week 13	Applications of differentiation
Week 14	Increasing and decreasing functions
Week 15	Preparatory week before the final Exam
Week 16	Preparatory week before the final Exam

Learning and Teaching Resources					
	Learning and Teaching Resources				
	Text	Available in the Library?			
Required Texts	 George B. Thomas, "THOMAS' CALCULUS ", Eleventh Edition 2011, Dorling Kindersley (India). Murry R. Spiegel," Mathematical Handbook of formulas and tables",1968. 				
Recommended Texts	 2-Ford , S.R. and Ford , J.R. " Calculus " , (1963) McGraw-Hill. 3-K.Back house and S.P.T. Houldsworth " Pure Mathematics a First Course " (1979) , S1 Edition , Longman Group . 				
Websites	 <u>https://tutorial.math.lamar.edu/classes/calci/calci.asp</u> https://learn.saylor.org/course/MA005 	X			

Grading Scheme Grading chart				
Group	Grade	Appreciation	Marks (%)	Definition
	A - Excellent	privilege	90 - 100	Outstanding Performance
	B - Very Good	Very good	80 - 89	Above average with some errors
Success Group	C - Good	Good	70 - 79	Sound work with notable errors
(50 - 100)	D - Satisfactory	medium	60 - 69	Fair but with major shortcomings
	E - Sufficient	popular	50 - 59	Work meets minimum criteria
Fail Group (0 – 49)	FX – File	Deposit (in	(45-49)	More work required but credit awarded
		processing)		
	F – File	Failure	(0-44)	Considerable amount of work required

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.