

Ministry of Higher Education and Scientific Research - Iraq

University of Warith Alanbyaa Aircraft engineering

MODULE DESCRIPTOR FORM

Module Information معلومات المادة الدراسية						
Module Title	Engineering Mechanics			Мо	Module Delivery	
Module Type	Core				Theory Lab Tutorial	
Module Code	ENME123					
ECTS Credits	7					
SWL (hr/sem)	175					
Module Level		1	Semester of Delivery 2		2	
Administering D	epartment	Aircarft	College	Engine	eering	
Module Leader	Dr. Mohamed	Wahab	e-mail	dr.mohammad.wahab@uokerbala.e		ıb@uokerbala.edu.iq
Module Leader's Acad. Title		Dr.	Module Lo Qualificat			Ph.D.
Module Tutor			e-mail			
Peer Reviewer Name			e-mail			
Review Committee Approval		03/04/2024	Version N	umber	1.0	

Relation With Other Modules العالقة مع المواد الدراسية األخرى					
Prerequisite module PHYS113 Semester 1					
Co-requisites module None Semester					

Module	Aims, Learning Outcomes and Indicative Contents
	أحداف المادة الدراسية وزنائج النعام والمحنويات اإلرشادية
	1. To assist students to understand the fundamental principles of
	engineering mechanics (Statics and Dynamics).
	2. To develop problem solving skills and understanding of principles
	of Dynamics Kinematics of rigid bodies: through the application of
	techniques as they relate to the different fields of engineering. 3. To develop problem solving skills and understanding of Newton's
Module Aims	law through the application of techniques.
أهداف المادة الدراسية	4. To understand how analysis of Structures, Trusses, Frames,
,	Machines, Centers of Mass and Centroids, and Area Moments of
	Inertia.
	5. To comprehend how clarification of Mass Moments of Inertia and
	analysis in two dimensions' problems.
	6. To understand the motion of bodies (kinematics), and the other
	subjects as it sequenced.
	1. Enable the student to learn and understand the basic Engineering
	Mechanics concepts, mass, forces, quantities and vectors at
	Mechanical Engineering
	2. The student should understand and be able to apply Newton's Laws.
	3. The student should Know the analysis of Structures, Trusses,
	Frames, Machines.
	4. The student should be able to find the Centers of Mass and Centroids.
	5. The student should know how can we find the Area Moments of
	Inertia, and the other subjects as it sequenced by the Course
Module Learning	Materials and Schedule.
Outcomes	6. Understanding the basic principles of particles and solid body's
مخرجات الناعلم للمادة الدراسية	motion
	7. The ability to make a mathematical model of the motion of the mechanical systems.
	8. Calculating the motion resulting from applying forces and moments,
	as well as calculating the forces and moments to describe the
	characteristics of motion.
	9. The student should understand and be able to relate the kinematics
	of bodies to the solution of dynamics problems in impulse and
	momentum of particles.
	10. The student should understand and be able to study the Absolute
	and relative acceleration

	11 The student should understand and he ship to south Noveton's I
	11. The student should understand and be able to apply Newton's Laws to particles to solve problems related to work and energy of particles.
	Indicative content includes the following.
	Part A - Statics Structures: Plane Trusses, Method of Joints, Method of Sections, and Frames and Machines [9 hrs].
	Centers of Mass and Centroids: Centroids of Lines, Centroids of Areas, Centroids of Volumes, and Composite Bodies and Figures [9 hrs].
	Area Moments of Inertia: Rectangular Moments of Inertia, Polar Moments of Inertia, Composite Areas, Products of Inertia, and Rotation of Axes [5 hrs].
	Part B - Dynamics
Indicative Contents المح ^ي و يات اللرشادية	Work and energy of particles: Work of a force, Kinetic energy of a particle, Principle of work and energy, and Potential energy [8 hrs].
	Impulse and momentum of particles: Rate of changed of angular momentum. Conservation of angular momentum, Rate of changed of angular momentum. Conservation of angular momentum [8 hrs].
	Impact: Central impact, Oblique Impact [8 hrs].
	Kinematics of rigid bodies: Translation and Rotation of rigid bodies, General motion. Absolute and relative velocity in plane motion, Instantaneous center of rotation, and Absolute and relative acceleration [12 hrs].
	Mass Moments of Inertia: Rectangular Mass Moments of Inertia, Polar Mass Moments of Inertia, and Composite Masses [8 hrs].
	Learning and Teaching Strategies اسئر انوج بات النعلم والنعلى
Stratogics	Type something like: The main strategy that will be adopted in delivering
Strategies	this module is to encourage students' participation in the exercises, while

at the same time refining and expanding their critical thinking skills. This will be achieved through classes, interactive tutorials and by considering type of simple experiments involving some sampling activities that are interesting to the students.

Student Workload (SWL) الحمل الدراسي للطالب				
Structured SWL (h/sem) Structured SWL (h/w) 7 الحمل الدراسي المن)نظم للطالب أسبوعيا				
Unstructured SWL (h/sem) الحمل الدراسي غور المنظم للطالب خالل النصل	67	Unstructured SWL (h/w) الحمل الدراسي غير المن تظم للطالب أسبوعيا	4.5	
Total SWL (h/sem) 175				

	Module Evaluation						
	نوييم الحادة الدراسية						
	Time/Nu weight (Marks) Week Due Outcome						
	Quizzes	4	20% (20)	3, 6, 9, 12	LO #1-11		
Formative	Assignments	2	10% (10)	5, 10	LO #1-11		
assessment	Projects / Lab.	5	10% (10)	Continuous	LO #1, 3, 4, 5, 6, 8, 11		
	Report	-	-	-	-		
Summative	Midterm Exam	1.5 hr	10% (10)	7	LO #1-11		
assessment	Final Exam	3hr	50% (50)	16	All		
Total assessn	nent		100% (100 Marks)				

Delivery Plan (Weekly Syllabus) المن هاج االسبوعي النظري				
	Material Covered			
Week 1	Structures: Plane Trusses, Method of Joints and Method of Sections			
Week 2	Structures: Frames and Machines			
Week 3	Week 3 Centers of Mass and Centroids: Centroids of Lines, Areas. and Volumes			
Week 4	Centers of Mass and Centroids: Centroids of Composite Bodies and Figures.			

	Area Moments of Inertia:
	Rectangular Moments of Inertia.
Week 5	Polar Moments of Inertia.
	Composite Areas.
	Products of Inertia
	Rotation of Axes.
Y47 1 6	Work and energy of particles:
Week 6	Work of a force.
	Kinetic energy of a particle.
*** 1 =	Work and energy:
Week 7	Principle of work and energy.
	Potential energy.
Week 8	Impulse and momentum of particles:
	Rate of changed of angular momentum.
Week 9	Impulse and momentum of particles:
	Conservation of angular momentum.
Week 10	Impact:
	Central impact.
Week 11	Impact:
	Oblique Impact.
Week 12	Kinematics of rigid bodies:
	Translation and Rotation of rigid bodies.
Week 13	Absolute motion:
week 13	General motion. Absolute and relative velocity in plane motion.
	Instantaneous center of rotation.
Week 14	Absolute motion:
	Absolute and relative acceleration.
	Mass Moments of Inertia:
Week 15	Rectangular Mass Moments of Inertia.
	Polar Mass Moments of Inertia.
	Composite Masses.
Week 16	Preparatory week before the Final Exam

Delivery Plan (Weekly Lab. Syllabus) المن هاج االسبو عي للمخنبر			
	Material Covered		
Week 1	Exp. 1: ACHIEVING THE LAW OF CONSERVATION OF ENERGY (MAXWELL'S WHEEL)		
Week 2	Exp. 2: EQUILIBRIUM FORCES IN THREE DIMENSIONS		
Week 3	Exp. 3: DETERMINING THE CENTROID FOR DIFFERENT GEOMETRIC SHAPES		
Week 4	Exp. 4: DETERMINING THE CENTER OF GRAVITY FOR DIFFERENT GEOMETRIC		
	SHAPES		

Week 5	Exp. 5: THE EXPERIMENTAL DETERMINATION OF THE MASS MOMENT OF INERTIA
week 5	FOR SOLID AND HOLLOW DISKS
Week 6	Exp. 6:
Week 7	Exp. 7:

Learning and Teaching Resources مصادر النعلم والهندريس				
	Text	Available in the Library?		
Required Texts	ENGINEERING MECHANICS VOLUME 1 STATICS EIGHTH EDITION (2016) VOLUME 2 DYNAMICS EIGHTH EDITION (2015) Publisher: John Wiley & Sons Singapore Pte. Ltd By James L. Meriam (Author), L. G. Kraige (Author), J. N. Bolton (Author)	Yes		
Recommended Texts	VECTOR MECHANICS FOR ENGINEERS: STATICS AND DYNAMICS Publisher: McGraw Hill; 12th edition (2018) by Ferdinand Beer (Author), E. Johnston (Author), David Mazurek (Author), Phillip Cornwell (Author), Brian Self (Author)	No		
Websites				

APPENDIX:

GRADING SCHEME مخطط الدر جات					
Group	Grade	التقدير	Marks (%)	Definition	
	A - Excellent	امنياز	90 - 100	Outstanding Performance	
	B - Very Good	جېد جدا	80 - 89	Above average with some errors	
Success Group (50 - 100)	C - Good	ختر	70 - 79	Sound work with notable errors	
(30 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings	
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria	
Fail Group	FX – Fail	مۇبىول بقرار	(45-49)	More work required but credit awarded	
(0-49)	F – Fail	راسب	(0-44)	Considerable amount of work required	

Note:

NB Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.