

Ministry of Higher Education and Scientific Research - Iraq

University of Warith Alanbyaa Aircraft engineering

MODULE DESCRIPTOR FORM نموذج وصف المادة الدراسية

Module Information معلومات المادة الدراسية						
Module Title	Thermodynamics I			Mod	ule Deliver	у
Module Type	Core					
Module Code	THER114/T	THER124			Theory	
ECTS Credits	7				Lab Tutorial	
SWL (hr/sem)	175					
Module Level		1	Semester of Delivery 1		1	
Administering D	epartment	Aircraft	College	Enginee	ring	
Module Leader Asst. Lec. Bassi		sim Sachet	e-mail	e-mail basim.sa@uowa.edu.iq		<u>iq</u>
Module Leader's Acad. Title		Asst. Lec.	Module Leader's Qualification			Masters
Module Tutor			e-mail			
Peer Reviewer Name			e-mail			
Review Committee Approval		03/04/2024	Version N	umber	1.0	

Relation With Other Modules العالقة مع المواد الدراسية األخرى				
Prerequisite module	None	Semester		
Co-requisites module	None	Semester		

Module Aims, Learning Outcomes and Indicative Contents				
	أحداف المادة الدراسية وزنائج النعام والمحنويات المرشادية			
	1. This course deals with the fundamentals of Thermodynamics including			
	thermodynamic systems and properties, and relationships among the			
	thermos-physical properties.			
	2. Description of the substance and phases including the theories dealing			
	with the analytical formulation of their properties.			
	3. Description of the thermal system and its surroundings with interaction			
Module Aims	characteristics between them.			
أمداف المادة الدراسوة	4. Awareness of units and dimensions in standard systems of units.			
	5. Definition of Energy and its forms, transformation means and tools.			
	6. Mathematical formulation of the First and Second laws of			
	thermodynamics, their limitations and applications of these basic laws in			
	thermodynamic systems.			
	7. Application of the physical and mathematical concepts to			
	thermodynamic processes and evaluating their impacts on performance and developing techniques.			
	, , ,			
	 Identify fundamental concepts relevant to thermodynamics. Students will know the definition of adiabatic, isobaric, isothermal and 			
	isometric processes.			
	3. Students will be familiar with the concept of a reversible engine and the			
	Carnot cycle.			
	3. To understand and analyze the influence of fluid properties on the			
	behaviour of engineering systems and to be able to analyze systems using			
Module Learning	the concepts of conservation of mass and energy. 4. Students will be able to find the maximum possible efficiency of heat			
Outcomes	engines and calculate the maximum coefficient of performance of a heat			
	pump or refrigerator.			
مخرجات الناعلم للمادة الدراسية	5. On successful completion of the module, students should be able to show			
	experience and enhancement of discipline-specific practical skills in using			
	appropriate modelling and analytical methods to solve thermodynamics			
	problems.6. To understand the thermodynamic behaviour of different fluids and their			
	importance in a heat pump or a refrigerator.			
	7. An understanding of the everyday implications of the laws of			
	thermodynamics and an ability to communicate these implications to a lay			
	audience.			
	Indicative content includes the following:			
Indicative Contents				
المحتويات اللرشادية	Part A - Basic concepts			
, 5, 45	- Systems of units & dimensions.			
	Force, Pressure. Mass, volume, sp. volume & density.			
	- Thermodynamic equilibrium.			

Conditions of equilibrium, Temperature and the Zeroth law of thermodynamics.

Thermometers and Temperature scales. [4hrs]

- Energy:

Types of thermodynamic system.

Conventional and renewable sources of energy. Stored and transported energy. Internal energy. Potential and kinetic energy. Elastic energy (springs). [8hrs]

Heat energy and the Specific heat capacity. Work energy and Power. Equivalent forms of work. Sign convention of heat & work. [8hrs]

- Properties of working substance:

Intensive & extensive properties. Single-phase system (Ideal gas), Equation of state for ideal gases, Real gas behavior.[4hrs]

Part B- First law of thermodynamics:

Conservation of energy principle, Statements of first law, Energy as system property, Non-flow energy equation, Practical applications of First law of thermodynamics. [4 hrs]

- Thermodynamic processes in closed system:

State function & path function. Constant volume process. Constant pressure process. Constant temperature process. Adiabatic &Polytropic process. [4hrs]

Flow systems:

Energy equation of flow systems. Steady & unsteady process. Boiler & condenser. Compressor & turbine. [8hrs]

Nozzle & diffuser.Throttling valves. [9hrs]

Reversible & irreversible process for flow systems (Frection, Temperature difference Free unrestrained explantion... etc.). [8hrs]

- Entropy:

Entropy & energy degradation, Entropy as system property.

Fundamental entropy equations. [8hrs]

Construction of (T - s) diagram for gases, Carnot cycle on (T - s) diagram.

General entropy equations for gases. [8hrs]

Entropy change in reversible processes. Entropy change in irreversible processes. [12hrs]

Part C- Second law of thermodynamics:

Relation between first & second laws, Statements of the second law. Heat engine & thermal efficiency, Carnot power cycle, Work & efficiency in Carnot power cycle, Reversed heat engine & COP., Reversed Carnot cycle for cooling (Work and COP in Carnot cooling cycle).[12hrs]

Learning and Teaching Strategies اسئر انوبجوات النعلم والنعلوبيم					
Strategies	 Teaching Method 1 – Lectures (Description: Attendance Recorded: Yes) Teaching Method 2 – Tutorials (Description: Attendance Recorded: Yes) Teaching Method 3 – Practical (Description: Practical homework assignments. Attendance Recorded: No) Teaching Method 4 – Unscheduled Directed Student Hours (time spent away from the timetabled sessions but directed by the teaching staff). Teaching Method 5- Laboratory sessions(Providing experimental supplementary to promote the engineering sense of students) 				

Student Workload (SWL) الحمل الدر اسي للطالب					
Structured SWL (h/sem) 78 Structured SWL (h/w) 5					
Unstructured SWL (h/sem) الحمل الدراسي غوير المنظم للطالب خالل النصل	97	Unstructured SWL (h/w) الحمل الدراسي غير المن تظم للطالب أسبوعيا	6.5		
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خالل الفرل	175				

	Module Evaluation							
	نقويم الحادة الدراسية							
	Time/Nu Weight (Marks) Week Due Outcome							
	Quizzes	4	20% (20)	3, 6, 9, 12	LO #1-7			
Formative	Assignments	2	10% (10)	5, 10	LO #1-7			
assessment	Projects / Lab.	6	10% (10)	Continuous	LO #1, 2, 3, 4, 5, 6			
	Report	-	-	-	-			
Summative	Midterm Exam	1.5 hr	10% (10)	7	LO #1-7			
assessment	Final Exam	3hr	50% (50)	16	All			
Total assessm	ient		100% (100 Marks)					

Delivery Plan (Weekly Syllabus) المنهاج االسبوعي النظري				
	Material Covered			
Week 1	Basic concepts: Systems of units & dimensions: Force, Pressure, Mass, volume, sp. volume & density. Thermodynamic equilibrium: Conditions of equilibrium, Temperature and the Zeroth law of thermodynamics, Thermometers and Temperature scales.			
Week 2	Energy: Types of thermodynamic system, Conventional and renewable sources of energy, Stored and transported energy, Internal energy, Potential and kinetic energy, Elastic energy (springs).			
Week 3	Heat energy and the Specific heat capacity, Work energy and Power, Equivalent forms of work, Sign convention of heat & work.			
Week 4	Properties of working substance: Intensive & extensive properties, Single-phase system (Ideal gas), Equation of state for ideal gases, Real gas behavior.			
Week 5	First law of thermodynamics: Conservation of energy principle, Statements of first law, Energy as system property, Non-flow energy equation, Practical applications of First law of thermodynamics.			
Week 6	Thermodynamic processes in closed system: State function & path function, Constant volume process, Constant pressure process.			
Week 7	Constant temperature process, Adiabatic &Polytropic process.			
Week 8	Flow systems: Energy equation of flow systems, Steady & unsteady process, Boiler & condenser, Compressor & turbine.			
Week 9	Nozzle & diffuser, Throttling valves, Reversible & irreversible process for flow systems (Friction, Temperature difference, Free unrestrained expansion etc.).			
Week 10	Entropy: Entropy & energy degradation, Entropy as system property, Fundamental entropy equations.			
Week 11	Construction of (T – s) diagram for gases, Carnot cycle on (T – s) diagram, General entropy equations for gases.			
Week 12	Entropy change in reversible processes, Entropy change in irreversible processes.			
Week 13	Second law of thermodynamics: Relation between first & second laws, Statements of the second law, Heat engine & thermal efficiency.			
Week 14	Carnot power cycle, Work & efficiency in Carnot power cycle.			
Week 15	Reversed heat engine & COP, Reversed Carnot cycle for cooling (Work and COP in Carnot cooling cycle).			
Week 16	Preparatory week before the Final Exam			

Delivery Plan (Weekly Lab. Syllabus) المن هاج االسبو عي للمخنبر				
	Material Covered			
Week 1	Exp. 1: Boyle's Law			
Week 2	Exp. 2: Gas thermometer			
Week 3	Exp. 3: Specific Heat			
Week 4	Exp. 4: Ratio of specific heat			
Week 5	Exp. 5: Reversed heat engine			
Week 6	Exp. 6: Calorific value of gaseous fuel			
Week 7	Exp. 7:			

Learning and Teaching Resources مصادر النغلم والهندريس				
Text Available in the Library?				
Required Texts	Yuns A. and Michael A. Boles and Mehmet Kanoğlu, "Thermodynamics: An Engineering Approach", 10 th Edition., 2024, ISBN 978-1-266-15211-5	Yes		
	Rajput, R. K. A textbook of engineering thermodynamics. Laxmi Publications, 2005.	Yes		
Recommended Texts	Estop T. and McConckyA., "Applied thermodynamics for engineering technologists", 2008.	Yes		
Websites				

APPENDIX:

GRADING SCHEME مخطط الدرجات						
Group	Grade	التقدير	Marks (%)	Definition		
	A - Excellent	امنياز	90 - 100	Outstanding Performance		
Success Group (50 - 100)	B - Very Good	جېد جدا	80 - 89	Above average with some errors		
	C - Good	ختر	70 - 79	Sound work with notable errors		
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings		
	E - Sufficient	مؤبول	50 - 59	Work meets minimum criteria		
Fail Group	FX – Fail	مۇبول بقرار	(45-49)	More work required but credit awarded		
(0-49)	F – Fail	راسب	(0-44)	Considerable amount of work required		
Note:						

NB Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.