|  | Ministry of Higher Education and Scientific Research - Iraq <br> University of Warith Alanbyaa Aircraft engineering |  |
| :---: | :---: | :---: |

## MODULE DESCRIPTOR FORM

 نموذج وصف المادة الدراسية| Module Information معلومات المادة الار اسية |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Module Title | Mathematics I رياضيات |  |  | Module Delivery |  |  |
| Module Type | Core |  |  |  |  |  |
| Module Code | MATH112 |  |  |  |  |  |
| ECTS Credits | 6 |  |  |  |  |  |
| SWL (hr/sem) | 150 |  |  |  |  |  |
| Module Level |  | 1 | Semester of Delivery |  |  | 1 |
| Administering Department |  | Aircraft | College | Engineering |  |  |
| Module Leader | Dr. Nihad Abduljaleel |  | e-mail |  |  |  |
| Module Leader's Acad. Title |  | Dr. | Module Leader's Qualification |  |  | Ph.D. |
| Module Tutor |  |  | e-mail |  |  |  |
| Peer Reviewer Name |  | Dr. | e-mail |  |  |  |
| Review Committee Approval |  | 03/04/2024 | Version | umber | 1.0 |  |

## Relation With Other Modules <br> العالقة مع المواد الدر اسية ألخرى

| Prerequisite module | None | Semester |  |
| :--- | :--- | :--- | :--- |
| Co-requisites module | None | Semester |  |


| Module Aims, Learning Outcomes and Indicative Contents أكان المادة اللر اسية ونتائج التُلم والمحتويات اإلرشّادية |  |
| :---: | :---: |
| Module Aims أهدات المادة اللر اسية | 1. To provide a course of high academic quality in Mathematics in a challenging and supportive learning environment that encourages students to reach their full potential, personally and academically. <br> 2. To provide a course that is suitable both for students aiming to pursue research and for students going into other careers. <br> 3. To provide an integrated system of teaching which can be tailored to the needs of individual students. <br> 4. To develop in students the capacity for learning and clear logical thinking. <br> 5. To continue to attract and select students of outstanding quality. <br> 6. To provide an intellectually stimulating environment in which students have the opportunity to develop their skills and enthusiasm to their full potential. |
| Module Learning Outcomes <br> مغرجات النُلم للماةة اللرا اسبة | Knowledge and Understanding: This Course will develop learners' ability to: <br> 1. Understand and use mathematical concepts and relationships <br> 2. Select and apply operational skills in algebra, geometry, trigonometry and statistics within mathematical contexts <br> 3. Select and apply skills in numeracy <br> 4. Use mathematical models <br> 5. Use mathematical reasoning skills to interpret information, select a strategy to solve a problem, and communicate solutions. <br> Subject-specific skills: It is expected that learners will develop the following: <br> 6. Broad, generic skills through this Course. <br> 7. Skills for Learning, and drawn from the main skills areas listed below. <br> 8. Skills for Life <br> 9. and Skills for Work <br> These must be built into the Course where there are appropriate opportunities. |
| Indicative Contents المحتويات الإرشادية | Indicative content includes the following. <br> Vector and the geometry of space: <br> Three-Dimensional Coordinate Systems, Vector Algebra Operations, unit Vectors, the Midpoint of a Line Segment, The Dot Product, The angle between Vectors, and The Cross Product. [12 hrs] <br> Matrices: <br> Types of matrices. Elementary operations with matrices and vectors. Determinants. Linear equations. Row reduction method. Cramer's rule. Applications. [18 hrs] |


|  | Limits and continuity: <br> Rates of Change and Limits, calculating limits using the limit law, infinite <br> limits and vertical asymptotes, continuity, tangents and derivatives. [12 hrs] <br> Differentiation: <br> Inverse Functions and Their Derivatives. Natural Logarithms. The <br> Exponential and Logarithm Functions. Trigonometric Functions. Inverse <br> Trigonometric Functions. Hyperbolic Functions. Inverse Hyerbolic <br> Functions. Calculating Derivatives from the Definition. Differentiation Rules <br> for (functions). Derivatives of Trigonometric Functions. The Chain Rule. <br> Implicit Differentiation. Derivatives of Higher Order. [22 hrs] <br> Applications of derivatives: <br> Extreme Values of Functions. Increasing and Decreasing Functions. <br> Concavity and Curve Sketching. Applied Optimization Problems. L'Hôpital's <br> Rule. The Mean Value Theorem. Motion along a Line: Displacement, Velocity, <br> Speed, Acceleration. Related Rates Equations (application on Implicit <br> Differentiation). Approximate calculation. [18 hrs] <br> General Applications. [5 hrs] |
| :--- | :--- |
| Learning and Teaching Strategies |  |
| Strategies | All lectures reflect the higher ind values, purposes and principles. They offer <br> flexibility, provide more time for learning, focus on skills and applying to <br> learn, and scope for personalization and choice. <br> In this Course, and its component Units, there will be an emphasis on skills <br> development and the application of those skills. Assessment appraaches will <br> be proportionate, fit for purpose and will promote best practices, enabling <br> learners to achieve the highest standards they can. <br> This course provides learners with opportunities to continue to acquire and <br> develop the attributes and capabilities of the four capacities, as well as skills <br> for learning, skills for life and skills for work. |


| Student Workload (SWL) الحمل الار اسي للطالب |  |  |  |
| :---: | :---: | :---: | :---: |
| Structured SWL (h/sem) الحط الرا اسي المتظط للطالب ذالل الفصل | 63 | Structured SWL (h/w) الحل الدراسي المنظطم للطاب السبو با | 4 |
| Unstructured SWL (h/sem) الحمل اللراسي غير المنتظم للطالب خالل الفصل | 87 | Unstructured SWL (h/w) الحل النراسي غر الهنظظ للطاب أبوبوبا | 5.8 |
| Total SWL (h/sem) الحمل الرر اسي الكي للطالب ذالل الفطل | 150 |  |  |


|  |  |  | ule Evaluation تْ": |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} \text { Time/Nu } \\ \text { mber } \end{gathered}$ | Weight (Marks) | Week Due | Relevant Learning Outcome |
| Formative assessment | Quizzes | 4 | 20\% (20) | 3, 6, 9, 12 | LO \#1, 2, 3,4 and 9 |
|  | Assignments | 2 | 10\% (10) | 5,10 | LO \#6, 7 |
|  | Projects / Lab. | - | - | - | - |
|  | Report | 1 | 10\% (10) | 13 | LO \#8 |
| Summative assessment | Midterm Exam | 1.5 hr | 10\% (10) | 7 | LO \# 1-5 |
|  | Final Exam | 3 hr | 50\% (50) | 16 | All |
| Total assessment |  |  | 100\% (100 Marks) |  |  |


| Delivery Plan (Weekly Syllabus) المنهاج اللسبوعي النظري |  |
| :---: | :---: |
|  | Material Covered |
| Week 1 | Vector and the geometry of space: <br> Three-Dimensional Coordinate Systems. Vector Algebra Operations. Unit Vectors. Midpoint of a Line Segment. |
| Week 2 | The Dot Product. The angle between Vectors. The Cross Product. |
| Week 3 | Matrices: Types of matrices. Elementary operations with matrices and vectors. |
| Week 4 | Determinants. Linear equations. Row reduction method. Cramer's rule. |
| Week 5 | Applications. |
| Week 6 | Limits and continuity: <br> Rates of Change and Limits. Calculating Limits Using the Limit Law. |
| Week 7 | Infinite Limits and Vertical Asymptotes. Continuity. Tangents and Derivatives. |
| Week 8 | Differentiation: <br> Inverse Functions and Their Derivatives. Natural Logarithms. The Exponential and Logarithm Functions. |
| Week 9 | Trigonometric Functions. Inverse Trigonometric Functions. Hyperbolic Functions. Inverse Hyperbolic Functions. |
| Week 10 | Calculating Derivatives from the Definition. Differentiation Rules for (functions). |
| Week 11 | Derivatives of Trigonometric Functions. The Chain Rule. Implicit Differentiation. Derivatives of Higher Order. |
| Week 12 | Applications of derivatives: <br> Extreme Values of Functions. Increasing and Decreasing Functions. Concavity and Curve Sketching. |
| Week 13 | Applied Optimization Problems. L'Hôpital's Rule. The Mean Value Theorem. Motion along a Line: Displacement, Velocity, Speed, Acceleration. |
| Week 14 | Related Rates Equations (application on Implicit Differentiation). Approximate calculation. |


| Week 15 | General Applications |
| :---: | :--- |
| Week 16 | Preparatory week before the Final Exam |



| Learning and Teaching Resources مصار الْنّلم والنّرسي |  |  |
| :---: | :---: | :---: |
|  | Text | Available in the Library? |
| Required Texts | George B. Thomas, Jr., Maurice D. Weir and Joel Hass, Thomas' calculus, 12th edition, Addison Wesley, 2010. | Yes |
| Recommended Texts | H.S. Gangwar, Prabhakar Gupta. A textbook engineering mathematics-I. Second edition, 2010. | No |
| Websites |  |  |

## APPENDIX:

| GRADING SCHEME مخطط الارجات |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Group | Grade | التّبرّ | Marks (\%) | Definition |
| Success Group(50-100) | A - Excellent | امتياز | 90-100 | Outstanding Performance |
|  | B - Very Good | جيد جدا | 80-89 | Above average with some errors |
|  | C - Good | جيّ | 70-79 | Sound work with notable errors |
|  | D - Satisfactory | متوسط | 60-69 | Fair but with major shortcomings |
|  | E - Sufficient | مقبول | 50-59 | Work meets minimum criteria |
| Fail Group$(0-49)$ | FX - Fail | مقّول بقّرار | (45-49) | More work required but credit awarded |
|  | F - Fail | راسب | (0-44) | Considerable amount of work required |
|  |  |  |  |  |
| Note: |  |  |  |  |
| NB Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55 , whereas a mark of 54.4 will be rounded to 54 . The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above. |  |  |  |  |

