

Ministry of Higher Education and Scientific Research Scientific Supervision and Scientific Evaluation Apparatus Directorate of Quality Assurance and Academic Accreditation Accreditation Department

University of Warith Al-Anbiyaa College of Medicine

Biomedical chemistry

ادقة السيد العميد

2024

1

Course Description Form

1. Course Name:

Biomedical chemistry

2. Course Code:

Med101

3. Semester / Year:

2024

4. Description Preparation Date:

2024/4/30

5. Available Attendance Forms:

Attendance

6. Number of Credit Hours (Total) / Number of Units (Total)

Units 9 Theoretical 90 hours Practical 60 hours

- 7. Course administrator's name (mention all, if more than one name) Name: Riyad Abdel Rasoul Hamid Haniwa
 - Email: riadh.ab@uowa.edu.iq

8. Course Objectives

٥.	Course Objectives	
Course	Objectives	

Introducing the student to studying the chemical composition of the human body and the changes that occur in this composition in normal and pathological cases, and conducting some laboratory experiments on some of the body's natural compounds.

9. Teaching and Learning Strategies

Strategy These are the plans that faculty members used to develop the teaching and learning process for students, and they are the plans that are followed to reach learning goals. They describe all curricular and extracurricular activities to achieve the learning outcomes of the programme.

10. Course Structure

Week	Hours	Required Learning	Unit or	Learning method	Evaluation
		Outcomes	subject		method
			name		
6	36	State amino ac		Learning	Conducting
		properties, Select ami		method	daily and
		acids which produ		a lecture	monthly
		specific biologi		laboratory	exams and
		compounds, Explain t		Discussion	evaluating
		biomedical importar		groups	daily
		of amino ac		small(sgd)	interaction
		decarboxylation, Defi			during
		transamination. Sta			lecture,
		the clinical value			laboratory,
		transamination, List t			and smal
		reactions due			groups
		carboxyl grou			
		reactions due to ami			
		group and reactions			
		SH group, Match t			
		clinical applications			
		the type of amino aci			
		Account for some of t			
		typical properties			
		amino acids (e.g., hi			
		melting poir			
		solubility in water)			
		terms of zwitteri			
		formation.			
		Illustrate disulfide bo			
		formation, Expl			
		disulfide bo			
		importance, Defi			
		peptide bond, dipepti			
		tripeptide a			
		polypeptide, expressi			
		how they are forme			
		Draw and name, the			
		possible isome			
		tripeptides that can			
		formed by combini			
		three different ami			
		acid residues (ami			

acid units) of giv	
structure, Illustrate t	
formation of a disulfi	
linkage between t	
cysteine residues, a	
how such bonds can li	
together two separa	
peptide chains or c	
provide a brid	
between two cystei	
residues present in	
single peptide molecu	
State the differe	
structural organizati	
of proteins, Describe t	
basic structure	
protein, including bo	
simple and conjugat	
proteins, Give exam	
on the protei	
structure-function	
relationship, Descri the main physi	
1 2	
properties of proteins State the differe	
structural organizati	
of proteins, Describe t	
basic structure	
protein, including be	
simple and conjugat	
proteins, Give examp	
on the protei	
structure-function	
relationship, Descri	
the main physi	
properties of proteins	
Classify proteins, sel	
suitable examples	
such group, Describe t	
basic structure of sim	
and conjugated protei	
Differentiate fibro	
proteins and globu	

proteins; Give	
example of the prima	
structure of a protein.	
Discuss the function a	
clinical significance	
proteins, Revi	
general causes	
abnormal serum	
plasma prote	
concentration, a	
Explain the no	
pathological factors th	
plasma prote	
concentration.	
Digestion of prote	
absorption of ami	
acids, Gastric a	
intestinal peptidas	
pancreatic peptidases	
Amino acids transp	
across intestinal ce	
Nitrogen balan	
positive and negat	
nitrogen balan	
causes, Degradation a	
transport	
intracellular and tiss	
protein, Amino a	
Metabolism, Essent	
and non-essential ami	
acids, Amino a	
biosynthesis,	
Transamination	
reactions, role	
pyridoxal-5- phospha	
Amino acid catabolis	
Ketogenic a	
glucogenic amino aci	
Transport of ammo	
to the liver and kidn	
neurotoxicity associat	
with ammonia. Ur	

	cycle, transport of un and excretion regulation, Metaboo fate of some amino aci amino acids and TCA cycle.	
	Tyrosine - deriv neurotransmitters. Tryptophan-derived neurotransmitters. Creatine, Glutathio polyamines, biosynthesis functions, Nitric oxi biosynthesis a functions.	
	Biosynthesis of puri nucleotides, de novo a salvage pathways.Regulation purine biosynthes degradation purines.Biosynthesis pyrimidine nucleotid regulation, oro aciduria. Degradation pyrimidine nucleotid Deoxyribonucleotide biosynthesis.	
11. Course Evalua	ation	

Distributing the score out of 100 according to the tasks assigned to the student such as daily preparation, daily oral, monthly, or written exams, reports etc

12. Learning and Teaching Resources

12			
Required textbooks (curricular books, if any)	Textbook of biochemistry		
	medical students		
Main references (sources)	DM Vasudevan		
Recommended books and references (scientific	Quick review of biochemistry		
journals, reports…)	Martin A Crook		
,	Lecture notes of biochemistry		
Electronic References, Websites			