

Ministry of Higher Education and Scientific Research - Iraq

University of Warith Al_Anbiyaa.... College of Engineering Oil and Gas Department

MODULE DESCRIPTION FORM

نموذج وصف المادة الدراسية

Module Information						
	معلومات المادة الدراسية					
Module Title	Engineerin	Strength	Modu	le Delivery		
Module Type	VA	Basic		<u>(</u>	☑ Theory	
Module Code		ENG114		☐ Lecture		
ECTS Credits		•6	°ô		⊠ Lab	
		900	7009		☐ Tutorial	
SWL (hr/sem)	<u> </u>	150			☐ Practical	
<u> </u>		اوليل	الندا		☐ Seminar	
Module Level		UGI	Semester of Delivery		1	
Administering Dep	partment	OGE	College	Engineering		
Module Leader Dr.Dheyaa Har		ndi	e-mail Dheiaa.ha@uowa.edu.iq		1	
Module Leader's Acad. Title		Asst. Professor	Module Leader's Qualification Ph		Ph.D	
Module Tutor NA			e-mail E-mail			
Peer Reviewer Name			e-mail	E-mail		
Scientific Committee Approval Date		01/06/2023	Version Number 1.0			

Relation with other Modules					
العلاقة مع المواد الدراسية الأخرى					
Prerequisite module	None	Semester			
Co-requisites module	Co-requisites module None Semester				

Modu	lle Aims, Learning Outcomes and Indicative Contents
Module Aims أهداف المادة الدراسية	أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية This module covers two main parts: •Fundamental principles, about the motion, velocity, newton's laws, statistic inertia, fluid inertia, sliding fraction, rolling fraction and help the student to solve and understand the problems. •Strength of material is the discipline of investigating the relationships that exist between the structures and properties of materials. Engineering material is designing or engineering the structure of a material to produce a predetermined set of properties. This part covers principles of stress and strain. Develops understanding of force, heat deformation, material properties, allowable strength, young modulus Poisson ratio. It also covers hook laws, shear stress, Moher circles, and the general strain energy equation.
Module Learning Outcomes مخرجات التعلم للمادة	1- The program prepares students for research and development in many frontier areas of engineering, including such as newton's laws, statistic and dynamic mechanic. 2-All students study the core theoretical subjects of fluid mechanics, dynamics, supplemented by courses in mathematics. 3- The program can be tailored to a student's interests through electives in engineering, mechanic or other applied sciences. 4 The program learn students the fundamental concepts of stress and strain. 5- Explain the concepts of shear and bearing stress. 6- Learn the Allowable force and safety factor for design materials. 7- Analysis and draw the Mohr's circle with bending diagrams
Indicative Contents المحتويات الإرشادية	Indicative content includes the following: Part I: fundamentals of Engineering Mechanics principles, about the motion, velocity, newton's laws, statistic inertia, fluid inertia, sliding fraction, rolling fraction and help the student to solve and understand the problems. (24 hrs) Part II: Strength of material fundamentals principles of stress and strain. Develops understanding of force, heat deformation, material properties, allowable strength, young modulus Poisson ratio. It also covers hook laws, shear stress, Moher circles, and the general strain energy equation. (28 hrs)

Learning and Teaching Strategies				
استراتيجيات التعلم والتعليم				
	The main strategy that will be adopted in delivering this module is to Encourage			
Strategies	students to ask and answer questions, as well as presenting many experimental work			
	lahs to increase students' knowledge			

Student Workload (SWL)					
الحمل الدراسي للطالب محسوب لـ ١٥ اسبوعا					
Structured SWL (h/sem)	90	Structured SWL (h/w)	6		
الحمل الدراسي المنتظم للطالب خلال الفصل	30	الحمل الدراسي المنتظم للطالب أسبوعيا	O		
Unstructured SWL (h/sem)	57	Unstructured SWL (h/w)	4		
الحمل الدراسي غير المنتظم للطالب خلال الفصل	37	الحمل الدراسي غير المنتظم للطالب أسبوعيا	7		
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	150				

Module Evaluation

تقييم المادة الدراسية

		Time/Nu mber	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	10% (10)	5 <mark>,</mark> 10	LO #1, 2, 10 and 11
Formative	Assignments	2	10% (10)	<mark>2,</mark> 12	LO # 3, 4, 6 and 7
assessment	Projects / Lab.	1	10% (10)	Continuous	All
	Report	1	10% (10)	13	LO # 5, 8 and 10
Summative .	Midterm Exam	2 hr	10% (10)	7	LO # 1-7
assessment	Final Exam	2hr	50% (50)	16	All
Total assessment		100% (100 Marks)			

Delivery Plan (Weekly Syllabus)				
المنهاج الاسبوعي النظري				
	Material Covered			
Week	Newton's laws			
Week	Types of the Fractions			

Week	Velocity, velocity and accelerations
Week	Plane curvilinear motion (x-y) coordinate
Week	Plane curvilinear motion (n-t) coordinate
Week	Plane curvilinear motion (r-θ) coordinate
Week	Curvilinear motion
Week	stress, strain, Relationship between stress and strain.
Week	Study the concept of Shear Stress, Bearing Stress and Shear Strain.
Week	Allowable working stress factor of safety and the Thermal Stress and Strain.
Week	Elastic Constants (young modulus, Poisson ratio, shear modulus and bulk modulus).
Week	Principle stress (maximum and minimum stress).
Week	Mohr's circle and Principal strain.
Week	Drawing the shear force and bending moment diagrams, Theory of shearing stress in beams.
Week	Study the Beams, types and subject loads, Theory of bending stress in beams with calculations
Week 16	Preparatory week before the final Exam

Delivery Plan (Weekly Lab. Syllabus)					
المنهاج الاسبوعي للمختبر					
	Material Covered				
Week 1	Tensile test				
Week 2	Hardness test				
Week 3	Impact test				
Week 4	Particles size analysis				
Week 5	Properties of engineering materials with regular shape test				
Week 6	Properties of engineering materials with irregular shape test				
Week 7	Study the passivity phenomenon test				
Week 8	Torsion test				
Week 9	Bending test				
Week 10	Deflection of beam test				
Week 11	Determination of moisture content				
Week 12	Calculation of water formation test				

Websites

Learning and Teaching Resources					
مصادر التعلم والتدريس					
	Available in the Library?				
	Engineering Mechanics: Statics & Dynamics 14th Edition				
Required Texts	Engineering Mechanics - Statics and Dynamics Book by A.				
Required Texts	Bedford and Wallace Fowler				
	Hibbeler Dynamics				
	Engineering Mechanics: Statics & Dynamics by Russell C.				
	Hibbeler				
	Philpot, Timothy A., and Jeffery S. Thomas. Mechanics of				
Recommended Texts	materials: an integrated learning system. John Wiley & Sons,				
	2020. WARITH				
	Timosh <mark>enko,</mark> Stephen. History of strength of materials: with				
	a bri <mark>ef account of the history of theory of elasticity</mark> and				
	theory of structures. Courier Corporation, 1983.				

Grading Scheme مخطط الدر جات						
Group	Grade	التقدير	Marks (%)	Definition		
	A - Excellent	امتياز	90 - 100	Outst <mark>a</mark> nding Performance		
6 6	B - Very Good	جيد جدا	80 - 89	Above average with some errors		
Success Group (50 - 100)	C - Good	جيد 🖳	70 - 79	Sound work with notable errors		
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings		
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria		
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded		
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required		

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.