

MODULE DESCRIPTOR FORM

Module Information					
Module Title	Thermodynamics I			Module Deliver	у
Module Type	CORE				
Module Code	ENG114 3 0			Theory Lab Tutorial	
ECTS Credits	7				
SWL (hr/sem)	175	200	5 4		
Module Level		1	Semester of I	Delivery	1
Administering Department		Aircraft Engineering	College E	ngineering	
Module Leader	Basim Sachit	Attiya	e-mail ba	sim.sa@uowa.edu	.iq
Module Leader's Acad. Title		Assist. Lec.	Module Lead Qualification	er's	MSc.
Module Tutor		2017	e-mail		
Peer Reviewer Name			e-mail		
Review Commit	ttee Approval	26/09/2024	Version Num	ber 2024	

Relation With Other Modules				
Prerequisite module	None	Semester		
Co-requisites module	None	Semester		
Module Aims, Learning Outcomes and Indicative Contents				

	1. This course deals with the fundamentals of Thermodynamics including				
	thermodynamic systems and properties, and relationships among the				
	thermos-physical properties.				
	2. Description of the substance and phases including the theories dealing				
	with the analytical formulation of their properties.				
	3. Description of the thermal system and its surroundings with interaction				
	characteristics between them.				
Module Aims	4. Awareness of units and dimensions in standard systems of units.				
	5. Definition of Energy and its forms, transformation means and tools.				
	6. Mathematical formulation of the First and Second laws of				
	thermodynamics, their limitations and applications of these basic laws in				
	thermodynamic systems				
	7 Application of the physical and mathematical concepts to thermodynamic				
	processes and evaluating their impacts on performance and developing				
	techniques				
	1 Identify fundamental concents relevant to thermodynamics				
	2. Students will know the definition of adiabatic isobaric isothermal and				
	isometric processes.				
	3. Students will be familiar with the concept of a reversible engine and the				
	Carnot cycle.				
	3. To understand and analyze the influence of fluid properties on the				
	behaviour of engineering systems and to be able to analyze systems using				
	the concepts of conservation of mass and energy.				
Module Learning	4. Students will be able to find the maximum possible efficiency of heat				
Outcomes	numn or refrigerator				
	5. On successful completion of the module, students should be able to show				
	experience and enhancement of discipline-specific practical skills in using				
	appropriate modelling and analytical methods to solve thermodynamics				
	problems.				
	6. To understand the thermodynamic behaviour of different fluids and their				
	importance in a heat pump or a refrigerator.				
	7. An understanding of the everyday implications of the laws of thermodynamics and an ability to communicate these implications to a law				
	audience.				
	Indicative content includes the following:				
La l'action Combonte	Part A - Basic concepts				
indicative contents	- Systems of units & dimensions.				
	- Thermodynamic equilibrium				
	Conditions of equilibrium Temperature and the Zeroth law of				
	thermodynamics.				

Thermometers and Temperature scales. [4hrs]
- Energy: Types of thermodynamic system.
Conventional and renewable sources of energy.Stored and transported energy. Internal energy. Potential and kinetic energy. Elastic energy (springs). [8hrs]
Heat energy and the Specific heat capacity. Work energy and Power. Equivalent forms of work.Sign convention of heat & work.[8hrs]
- Properties of working substance: Intensive & extensive properties. Single-phase system (Ideal gas), Equation of state for ideal gases, Real gas behavior.[4hrs]
Part B- First law of thermodynamics: Conservation of energy principle, Statements of first law, Energy as system property, Non-flow energy equation, Practical applications of First law of thermodynamics. [4 hrs]
- Thermodynamic processes in closed system: State function & path function. Constant volume process. Constant pressure process. Constant temperature process. Adiabatic &Polytropic process. [4hrs]
Flow systems: Energy equation of flow systems. Steady & unsteady process.Boiler & condenser. Compressor & turbine. [8hrs] Nozzle & diffuser.Throttling valves. [9hrs]
difference Free unrestrained explantion etc.). [8hrs]
Entropy & energy degradation, Entropy as system property. Fundamental entropy equations. [8hrs] Construction of (T – s) diagram for gases, Carnot cycle on (T – s) diagram.
General entropy equations for gases. [8hrs] Entropy change in reversible processes.Entropy change in irreversible processes. [12hrs]
Part C- Second law of thermodynamics: Relation between first & second laws, Statements of the second law. Heat engine & thermal efficiency, Carnot power cycle, Work & efficiency in Carnot power cycle, Reversed heat engine & COP., Reversed Carnot cycle for cooling (Work and COP in Carnot cooling cycle).[12hrs]

Learning and Teaching Strategies					
Strategies	 Teaching Method 1 – Lectures (Description: Attendance Recorded: Yes) Teaching Method 2 – Tutorials (Description: Attendance Recorded: Yes) Teaching Method 3 – Practical (Description: Practical homework assignments. Attendance Recorded: No) Teaching Method 4 – Unscheduled Directed Student Hours (time spent away from the timetabled sessions but directed by the teaching staff). Teaching Method 5- Laboratory sessions(Providing experimental supplementary to promote the engineering sense of students) 				

OF WARITH					
Student Workload (SWL)					
Structured SWL (h/sem)	78	Structured SWL (h/w)	5		
Unstructured SWL (h/sem)	97	Unstructured SWL (h/w)	6.5		
Fotal SWL (h/sem) 175					

Module Evaluation						
		Time/	Waight (Marks)	Wook Duo	Relevant Learning	
		Number		week Due	Outcome	
	Quizzes	4	20% (20)	3, 6, 9 <mark>,</mark> 12	LO #1-7	
Formative assessment	Assignments	2	10% (10)	5, 10	LO #1-7	
	Projects / Lab.	Lab. 5	10% (10)	Continuous	LO #1, 2, 3, 4, 5, 6	
	Report			-	-	
Summative	Midterm Exam	2 hrs.	10% (10)	7	LO #1-7	
assessment	Final Exam	3 hrs.	50% (50)	16	All	
Total assessment100% (100 Marks)						

Delivery Plan (Weekly Syllabus)				
	Material Covered			
Week 1	Basic concepts: Systems of units & dimensions: Force, Pressure,Mass, volume, sp. volume & density.Thermodynamic equilibrium: Conditions of equilibrium, Temperature and the			

	Zeroth law of thermodynamics, Thermometers and Temperature scales.
Week 2	Energy: Types of thermodynamic system, Conventional and renewable sources of energy, Stored and transported energy, Internal energy, Potential and kinetic energy, Elastic energy (springs).
Week 3	Heat energy and the Specific heat capacity,Work energy and Power, Equivalent forms of work, Sign convention of heat & work.
Week 4	Properties of working substance: Intensive & extensive properties, Single-phase system (Ideal gas), Equation of state for ideal gases, Real gas behavior.
Week 5	First law of thermodynamics: Conservation of energy principle, Statements of first law, Energy as system property, Non-flow energy equation, Practical applications of First law of thermodynamics.
Week 6	Thermodynamic processes in closed system: State function & path function, Constant volume process, Constant pressure process.
Week 7	Constant temperatur <mark>e process</mark> , Adiabatic &Polytropic process.
Week 8	Flow systems: Energy equation of flow systems, Steady & unsteady process, Boiler & condenser, Compressor & turbine.
Week 9	Nozzle & diffus <mark>e</mark> r, Throttling valves, Reversible & irreversible process for flow systems (Friction, Temperature difference, Free unrestrained expansion etc.).
Week 10	Entropy: Entropy & energy degradation, Entropy as system property, Fundamental entropy equations.
Week 11	Construction of (T – s) diagram for gases, Carnot cycle on (T – s) diagram, General entropy equations for gases.
Week 12	Entropy chang <mark>e</mark> in reversible processes, Entropy change in <mark>ir</mark> reversible processes.
Week 13	Second law of thermodynamics: Relation between first & second laws, Statements of the second law, Heat engine & thermal efficiency.
Week 14	Carnot power cycle, Work & efficiency in Carnot power cycle.
Week 15	Reversed heat engine & COP, Reversed Carnot cycle for cooling (Work and COP in Carnot cooling cycle).
Week 16	Preparatory week before the Final Exam
	كليــــة الهندســـــه

Delivery Plan (Weekly Lab. Syllabus)				
	Material Covered			
Week 1	Exp. 1: Boyle's Law			
Week 2	Exp. 2: Gas thermometer			
Week 3	Exp. 3: Specific Heat			
Week 4	Exp. 4: Ratio of specific heat			

Week 5	Exp. 5: Reversed heat engine
Week 6	Exp. 6: Calorific value of gaseous fuel
Week 7	Exp. 7:

Learning and Teaching Resources				
	Text	Available in the Library?		
Required Texts	Yuns A. and Michael A. Boles and Mehmet Kanoğlu, "Thermodynamics: An Engineering Approach", 10 th Edition., 2024, ISBN 978-1-266-15211-5	Yes		
	Rajput, R. K. A textbook of engineering thermodynamics. Laxmi Publications, 2005.	Yes		
Recommended Texts	Estop T. and McConckyA., "Applied thermodynamics for engineering technologists", 2008.	Yes		
Websites	- OF WARITH			
APPENDIX:	SITUEGE OF ENGINEER AL			

APPENDIX:

GRADING SCHEME				
Group	Grade	التقدير	Marks (%)	Definition
Success Group (50 - 100)	A - Excel <mark>le</mark> nt	امتياز	90 - 100	Outstanding Performance
	B - Very <mark>G</mark> ood	جيد جدا 🖉	80 - 89	Above ave <mark>ra</mark> ge with some errors
	C - Good	بن نز	70 - 79	Sound work with notable errors
	D - Satisf <mark>ac</mark> tory	متوسط	60 - 69	Fair but with major shortcomings
	E - Suffic <mark>ie</mark> nt	مقبول	50 - 59	Work meets minimum criteria
Fail Group (0 – 49)	FX – Fail	مقبول بقرار	(45-49)	More work required but credit awarded
	F – Fail 📕	راسب	(0-44)	Considerable amount of work required
Note:				

NB Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

