

MODULE DESCRIPTOR FORM

Module Information					
Module Title	Engineering Mechanics			Module Deliver	у
Module Type	Core	4 °° °		BL	
Module Code	ENG123			Theory Lab	
ECTS Credits	7	💿 C (🕁)		Tutorial	l
SWL (hr/sem)	175		5 <i>V</i>		
Module Level		1	Semester o	f Delivery	2
Administering Department		Aircraft Engineering	College	Engineering	
Module Leader	Mohammed V	Vahhab	e-mail	dr.mohammad.waha	ab@uokerbala.edu.iq
Module Leader's Acad. Title		Prof	Module Leader's Qualification		PhD.
Module Tutor		2017	e-mail		
Peer Reviewer Name			e-mail		
Review Committee Approval		26/09/2024	Version Nu	mber 2024	

Relation With Other Modules					
Prerequisite module	ENG113	Semester	1		
Co-requisites module	None	Semester			
Module Aims, Learning Outcomes and Indicative Contents					

	1. To assist students to understand the fundamental principles of			
	engineering mechanics (Statics and Dynamics).			
	2. To develop problem solving skills and understanding of principles			
	of Dynamics Kinematics of rigid bodies: through the application of			
	techniques as they relate to the different fields of engineering.			
	3. To develop problem solving skills and understanding of Newton's			
	law through the application of techniques.			
Module Aims	4. To understand how analysis of Structures, Trusses, Frames,			
	Machines, Centers of Mass and Centroids, and Area Moments of			
	Inertia.			
	5. To comprehend how clarification of Mass Moments of Inertia and			
	analysis in two dimensions' problems.			
	6. To understand the motion of bodies (kinematics), and the other			
	subjects as it sequenced.			
	OF OF ENCLY AL			
	1. Enable the student to learn and understand the basic Engineering			
	Mechanics concepts, mass, forces, quantities and vectors at			
	Mechanical Engineering			
	2. The student should understand and be able to apply Newton's Laws.			
	3. The student should Know the analysis of Structures, Trusses,			
	Frames, Machines.			
	4. The student should be able to find the Centers of Mass and			
	Centroids.			
	5. The student should know how can we find the Area Moments of			
	Inertia, and the other subjects as it sequenced by the Course			
	Materials and Schedule.			
Module Learning	6. Understanding the basic principles of particles and solid body's			
Outcomes	motion			
	7. The ability to make a mathematical model of the motion of the			
	mechanical systems.			
	8. Calculating the motion resulting from applying forces and moments,			
	as well as calculating the forces and moments to describe the			
	characteristics of motion.			
	9. The student should understand and be able to relate the kinematics			
	of bodies to the solution of dynamics problems in impulse and			
	momentum of particles.			
	10. The student should understand and be able to study the Absolute			
	and relative acceleration			
	11. The student should understand and be able to apply Newton's Laws			
	to particles to solve problems related to work and energy of			

	narticles
	Indicative content includes the following.
Indicative Contents	Indicative content includes the following. Part A - Statics Structures: Plane Trusses, Method of Joints, Method of Sections, and Frames and Machines [9 hrs]. Centers of Mass and Centroids: Centroids of Lines, Centroids of Areas, Centroids of Volumes, and Composite Bodies and Figures [9 hrs]. Area Moments of Inertia: Rectangular Moments of Inertia, Polar Moments of Inertia, Composite Areas, Products of Inertia, and Rotation of Axes [5 hrs]. Part B - Dynamics Work and energy of particles: Work of a force, Kinetic energy of a particle, Principle of work and energy, and Potential energy [8 hrs]. Impulse and momentum of particles: Rate of changed of angular momentum. Conservation of angular momentum, Rate of changed of angular momentum. Conservation of angular momentum [8 hrs]. Impact: Central impact, Oblique Impact [8 hrs]. Kinematics of rigid bodies: Translation and Rotation of rigid bodies, General motion. Absolute and relative velocity in plane motion, Instantaneous center of rotation, and Absolute and relative acceleration [12 hrs].
	Mass Moments of Inertia: Rectangular Mass Moments of Inertia, Polar Mass Moments of Inertia, and Composite Masses [8 hrs].
	Learning and Teaching Strategies
Strategies	Type something like: The main strategy that will be adopted in delivering this module is to encourage students' participation in the exercises, while at the same time refining and expanding their critical thinking skills. This will be achieved through classes interactive tutorials and by considering time of
	simple experiments involving some sampling activities that are interesting

to the students.

Student Workload (SWL)					
Structured SWL (h/sem)	108Structured SWL (h/w)7				
Unstructured SWL (h/sem) 67 U		Unstructured SWL (h/w)	4.5		
Total SWL (h/sem)	175				

Module Evaluation						
		Time/ Number	Weight (Marks)	Week Due	Relevant Learning Outcome	
	Quizzes	4	20% (20)	3, 6, 9, 12	LO #1-11	
Formative	Assignments	2	10% (10)	5, 10	LO #1-11	
assessment	Projects / Lab.	Lab. 5	10% (10)	Cont inuous	LO #1, 3, 4, 5, 6, 8, 11	
	Report	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	· · · ·	(D) -	-	
Summative	Midterm Exam	2 hrs.	10% (10)	7	LO #1-11	
assessment	Final Exam	3 hrs.	50% (50)	1 <mark>6</mark>	All	
Total assessment			100% (100 Marks)	() ()		

Delivery Plan (Weekly Syllabus)					
	Material Covered				
Week 1	Structures: Plane Trusses, Method of Joints and Method of Sections				
Week 2	Structures: Frames and Machines 2017				
Week 3	Centers of Mass and Centroids: Centroids of Lines, Areas. and Volumes				
Week 4	Centers of Mass and Centroids:				
Week 5	Area Moments of Inertia: Rectangular Moments of Inertia. Polar Moments of Inertia. Composite Areas. Products of Inertia Rotation of Axes.				
Week 6	Work and energy of particles: Work of a force.				

	Kinetic energy of a particle.
	Work and energy:
Week 7	Principle of work and energy.
	Potential energy.
Week 8	Impulse and momentum of particles:
	Rate of changed of angular momentum.
Week 9	Impulse and momentum of particles:
	Conservation of angular momentum.
Week 10	Impact:
	Central impact.
Week 11	Impact:
	Oblique Impact.
Week 12	Kinematics of rigid bodies:
	Translation and Rotation of rig <mark>id bo</mark> dies.
	Absolute motion:
Week 13	General motion. Absolute and relative velocity in plane motion.
	Instantaneous center of rotation. OF ENCLASSING AND
Week 14	Absolute motion:
-	Absolute and rel <mark>a</mark> tive acceleration.
	Mass Moments of Inertia:
Week 15	Rectangular Mass Moments of Inertia.
	Polar Mass Mo <mark>m</mark> ents of Inertia.
-	Composite Masses.
Week 16	Preparatory week before the Final Exam

Delivery Plan (Weekly Lab. Syllabus)				
	Material Covered			
Week 1	Exp. 1: ACHIEVING THE LAW OF CONSERVATION OF ENERGY (MAXWELL'S WHEEL)			
Week 2	Exp. 2: EQUILIBRIUM FORCES IN THREE DIMENSIONS			
Week 3	Exp. 3: DETERMINING THE CENTROID FOR DIFFERENT GEOMETRIC SHAPES			
Weels	Exp. 4: DETERMINING THE CENTER OF GRAVITY FOR DIFFERENT GEOMETRIC			
WCCK Ŧ	SHAPES			
Wook 5	Exp. 5: THE EXPERIMENTAL DETERMINATION OF THE MASS MOMENT OF INERTIA			
WEER J	FOR SOLID AND HOLLOW DISKS			
Week 6	Exp. 6:			
Week 7	Exp. 7:			

Γ

Learning and Teaching Resources				
	Text	Available in the Library?		
Required Texts	ENGINEERING MECHANICS VOLUME 1 STATICS EIGHTH EDITION (2016) VOLUME 2 DYNAMICS EIGHTH EDITION (2015) Publisher: John Wiley & Sons Singapore Pte. Ltd By James L. Meriam (Author), L. G. Kraige (Author), J. N. Bolton (Author)	Yes		
Recommended Texts	VECTOR MECHANICS FOR ENGINEERS: STATICS AND DYNAMICS Publisher : McGraw Hill; 12th edition (2018) by Ferdinand Beer (Author), E. Johnston (Author), David Mazurek (Author), Phillip Cornwell (Author), Brian Self (Author)	No		
Websites	RSIOLLEOL CERINAL			

APPENDIX:

UNI

GRADING SCHEME					
Group	Grade	التقدير	Marks (%)	Definition	
	A - Excel <mark>le</mark> nt	امتياز	90 - 100	Outstanding Performance	
Success Group (50 - 100)	B - Very <mark>G</mark> ood	جيد جدا	80 - 89	Above average with some errors	
	C - Good	جيد	70 - 79	Sound work with notable errors	
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings	
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria	
Fail Group	FX – Fail	مقبول بقرار	(45-49)	More work required but credit awarded	
(0 - 49)	F – Fail	راسب	(0-44)	Considerable amount of work required	
Note:					

NB Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.