Course Description Form

1. Course Name: Sanitary and Environmental Engineering I 2. Course Code: WCV-41-02 3. Semester / Year: First Semester / 2024 - 2025 4. Description Preparation Date: NOT OF ENGLAY 1 September 2024 PO O TO TO 5. Available Attendance Forms: **Presence** 6. Number of Credit Hours (Total) / Number of Units (Total) Number of hours: 75 hours (30 hours theoretical, 15 hours tutorial, and 30 hours practical) Number of units: 3 units 7. Course administrator's name (mention all, if more than one name) 2017 Name: Lec. Safaa Sabry Mohammed Email: Safaa.sabry@uowa.edu.ig 8. Course Objectives **Course Objectives** • Understand the Fundamentals of Water Supply Systems • Analyze Water Quality Parameters • Design Water Supply Systems • Apply Water Treatment Techniques • Evaluate Water Demand and Consumption

	• Implement Sustainable Water Management Practices		
9. Teaching	and Learning Strategies		
rategy	Interactive Lectures and Discussions Practical Labs and Field Visits		

10. Course Structure

Strategy

Week	Hours	Required Learning Outcomes	Unit or subject name	Learning method	Evaluation method
1-3	12	Quantity of water	Sanitary and Environmental Engineering I		
3-6	12	Collection and distribution of water			
6-7	4	Intakes		Dwagowgo	Exams
7-9	4	Pump and pumping stations		Participation Attendance	
9-10	4	Quality of water supply			
11-15	20	Treatment of water			

• Project-Based Learning and Case Studies

11. Course Evaluation

10 marks (daily preparation, daily and oral exams, homework, and classroom activities)

- 10 marks (Practical aspect: Reporting, discussion and exams)
- 30 marks (monthly exams)
- 50 marks (final exam)

12. Learning and Teaching Resources

Required textbooks (curricular books, if any)	Steel, E.W. and McGhee, T.J., 1979. Water supply and sewerage (5th edition). New York: McGraw-Hill.	
Main references (sources)	Baruth, E.E. and American Water Works Association, 2005. Water treatment plant design.	
Recommended books and references (scientific journals, reports)	Metcalf, I.N.C., 2003. Wastewater engineering; treatment and reuse. McGrawHill.	

Course Description

Electronic References, Websites

Davis, M.L., 2010. Water and wastewater engineering. McGraw-Hill.

