MODULE DESCRIPTION FORM

Module Information						
Module Title	Materials Science			Modu	le Delivery	
Module Type		В			🗷 Theory	
Module Code		BME-214			I Lecture	
ECTS Credits		4			🗷 Lab	
				_	🗆 Tutorial	
SWL (hr/sem)		100			Practical	
					🗆 Seminar	
Module Level 1		1	Semester o	f Deliver	y	1
Administering Department		Biomedecal	College	Engine	Engineering	
Module Leader	Hasan Allawi		e-mail	Hassan.	as@uowa.edu.ic	1
Module Leader's Acad. Title		Assist lecture	Module Lea	Module Leader's Qualification Msc		Msc
Module Tutor	Name (if available)		e-mail	E-mail	E-mail	
Peer Reviewer Name		Name	e-mail E-mail			
Scientific Committee Approval Date		01/06/2023	Version Nu	mber	n ber 1.0	

Relation with other Modules			
Prerequisite module	None	Semester	
Co-requisites module	None	Semester	

Module Aims, Learning Outcomes and Indicative Contents				
Module Aims	 Identify engineering materials, especially biological materials, that are in contact with the body of a living organism. Identify the types of bonding between atoms of matter Identify space lattice of metals Calculations related with space lattice of metals Mechanical properties of materials Polymers: its types, properties and applications Ceramics: its types, properties and applications Composite materials. 			
Module Learning Outcomes	 Training the student on the purposeful engineering mindset Make the student able to distinguish between engineering materials and their uses. Applying theoretical concepts through conducting practical experiments on the properties of matter. Recognize and understand how to choose the right material in the right place. The ability to analyze and discover the problem or error and the ability to find a solution to the error. 			
Indicative Contents	Indicative content includes the following. -Introduction into materials science Materials Science and Engineering. Why Study Materials Science? Classification of Materials Primary and secondary bonds. Atomic Structure Number of atoms Atomic Bonding in Solids Types of bonds in materials Types of bonds in materials Types of atomic and molecular bonds Metal-crystal network. Atomic or Ionic Arrangements Crystal Structures of metals The Face-Centered Cubic (FCC) Crystal Structure The Body-Centered Cubic Crystal Structure (B.C.C).			

Density Computations—metals
Single Crystals
Polycrystalline Materials
Nanocrystalline Solids (Amorphous) (16hrs)
- Introduction into Mechanical behavior
Tensile testing
Engineering Stress-Strain Curve
Shear testing
Hardness
Fatigue test
Some problems (8hrs)
- Introduction into Polymer
Fundamentals of Polymer Science and Technology
Importance of polymers
Polymerization
Degree of Polymerization and Molecular Weight
Linear, Branched, and Cross-Linked Polymers
Network Polymers
Copolymers
Arrangements of polymer unite (mers)
Crystallinity
Polymer Crystals
Plastics (12hrs)
- Introduction into Ceramics
Classification of ceramic materials
Properties of ceramics:
Structures of Crystalline Ceramics
Types of ceramics
A-Traditional Ceramics
B-New Ceramics
Glass
Methods of producing ceramics:
Bio ceramics
Examples for Bio ceramics (12hrs)
- Introduction into Composites materials

Technology and Classification of
Composite Materials
Metal Matrix Composites
Ceramic Matrix Composites
Polymer Matrix Composites (8hrs)

Learning and Teaching Strategies			
Strategies	 Giving lectures and solving mathematical problems, if any, on the board. Use of modern technologies and display videos and practical means of electronic display (Data Show) to illustrate the shapes and drawings and diagrams and vocabulary lecture. Focusing on students' participation in the lecture by asking questions, eliciting new ideas and finding other ways to solve mathematical problems. Adopting the homework method to solve the exercises by the students and evaluating their solutions in the classroom. 		

Student Workload (SWL)				
Structured SWL (h/sem)	63	Structured SWL (h/w)	4	
Unstructured SWL (h/sem)	37	Unstructured SWL (h/w)	2.5	
Total SWL (h/sem)	100			

Madula Evaluation	

		Time/Nu	Weight (Marks)	Week Due	Relevant Learning
		mber			Outcome
	Quizzes	4	10% (10)	3, 6, 10,13	LO #1, 2, 10 and 11
Formative	Assignments	2	10% (10)	3, 12	LO # 4, 5, 7 and 8
assessment	Projects / Lab.	1	10% (10)	Continuous	All
	Report	1	10% (10)	13	LO # 5, 8 and 10
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-7
assessment	Final Exam	3hr	50% (50)	16	All
Total assessment		100% (100 Marks)			

Delivery Plan (Weekly Syllabus)			
	Material Covered		
	Introduction into materials science		
	Materials Science and Engineering.		
Week 1	Why Study Materials Science?		
	Classification of Materials		
	Primary and secondary bonds.		
	Atomic Structure		
Wook 2	Number of atoms		
WEEK Z	Atomic Bonding in Solids		
	Types of bonds in materials		
	Types of atomic and molecular bonds		
	Metal-crystal network.		
	Atomic or Ionic Arrangements		
Week 3	Crystal Structures of metals		
	The Face-Centered Cubic (FCC) Crystal Structure		
	The Body-Centered Cubic Crystal Structure (B.C.C).		
	The Hexagonal Close-Packed Crystal Structure (HCP).		
	Density Computations—metals		
Week 4	Single Crystals		
	Polycrystalline Materials		
	Nanocrystalline Solids (Amorphous)		
Week 5	Introduction into Mechanical behavior		

	Tensile testing
	Engineering Stress-Strain Curve
	Shear testing
	Hardness
Week 6	Fatigue test
	Some problems
Week 7	Mid-term Exam
	Introduction into Polymer
Wook 8	Fundamentals of Polymer Science and Technology
WEEKO	Importance of polymers
	Polymerization
	Degree of Polymerization and Molecular Weight
Week 9	Linear, Branched, and Cross-Linked Polymers
week 9	Network Polymers
	Copolymers
	Arrangements of polymer unite (mers)
	Crystallinity
Week 10	Polymer Crystals
	Plastics
	Introduction into Ceramics
Week 11	Classification of ceramic materials
	Properties of ceramics:
	Structures of Crystalline Ceramics
Week 12	Types of ceramics
WEEK 12	A-Traditional Ceramics
	B-New Ceramics
	Glass
Wook 12	Methods of producing ceramics:
Week 15	Bio ceramics
	Examples for Bio ceramics
Week 14	Introduction into Composites materials
Week 14	Technology and Classification of

	Composite Materials
	Metal Matrix Composites
Week 15	Ceramic Matrix Composites
	Polymer Matrix Composites
Week 16	Preparatory week before the final Exam

Delivery Plan (Weekly Lab. Syllabus) Material Covered Week 1 Lab 1: Sample Preparation for Microscopic Inspection Week 2 Lab 2: Microscopic Inspection for specimen Week 3 Lab 3: Tensile Test Week 4 Lab 4: Hardness Test Week 5 Lab 5: Fatigue test Week 6 Lab 6: Impact Test Lab 7: Properties of Engineering Materials with Regular Shapes -Bulk density Week 7 - Specific weight: - The porosity

Learning and Teaching Resources					
	Text				
Required Texts	 1- (Engineering metallurgy, part 1) Higgins, Raymond A Engineering Metallurgy - Applied Physical Metallurgy- Elsevier (1993). 2- (Engineering metallurgy, part 2) Higgins, Raymond A Engineering Metallurgy - Applied Physical Metallurgy- Elsevier (1993). 	No			
Recommended Texts	1-The Science and Engineering of Materials, Seventh Edition, Donald R. Askeland, University of	No			

	Missouri—Rolla, Emeritus, Wendelin J. Wright, Bucknell
	Univers, 2016.
	2-Materials Science and Engineering
	An Introduction,
	William D. Callister, Jr. and David G. Rethwisch, 2010
Websites	/https://www.sanfoundry.com

Grading Scheme						
			مخطط الدرجات			
Group	Grade	Marks (%)	Definition			
Success Group (50 - 100)	A - Excellent	90 - 100	Outstanding Performance			
	B - Very Good	80 - 89	Above average with some errors			
	C - Good	70 - 79	Sound work with notable errors			
	D - Satisfactory	60 - 69	Fair but with major shortcomings			
	E - Sufficient	50 - 59	Work meets minimum criteria			
Fail Group FX – Fail		(45-49)	More work required but credit awarded			
(0 – 49)	F – Fail	(0-44)	Considerable amount of work required			

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.