MODULE DESCRIPTION FORM

Module Information						
Module Title	Mathematics III			Modu	Module Delivery	
Module Type		Basic learning			I Theory	
Module Code		ENG201		□ Lab		
ECTS Credits		6				
SWL (hr/sem)	150				Practical Seminar	
Module Level		2	Semester of Delivery		3	
Administering Dep	partment		College	Engine	ering College	
Module LeaderDr.Saad Mahmood Sarhan Assist. Lect. Ahmad			e-mail	<u>saad.mah@uowa.edu.iq</u>		l
Module Leader's Acad. Title			Module Lea	Iodule Leader's Qualification		
Module Tutor	le Tutor Name (if available)		e-mail	E-mail		
Peer Reviewer Name		Name	e-mail E-mail			
Scientific Committee Approval Date		1/6/2023	Version Number 1.0			

Relation with other Modules				
Prerequisite moduleMathematics IISemester2				
Co-requisites moduleNoneSemester				

Modu	le Aims, Learning Outcomes and Indicative Contents				
Module Aims	The module aims to provide students with a solid understanding of the fundamental concepts and techniques of linear algebra. This includes the study of linear equations. Students will also learn how to apply these concepts to solve real-world problems in various fields such as engineering, physics, economics, and computer science. By the end of the module, students should be able to manipulate and analyze mathematical models using linear algebraic tools and communicate their findings effectively.				
	On completion of this module, students are expected to be able to:				
Module Learning Outcomes	 Differentiate functions using the chain rule, product rule, quotient rule, and differentiation formula. Formulate and solve first, second and higher order differential equations by algebraic methods. Apply Fourier series to solving ordinary differential equations. Test a given series for convergence, determine whether a given sequence converges or not. Differential Equations: Ordinary differential equations (ODEs) and partial differential equations (PDEs) are extensively used to describe dynamic systems and phenomena in engineering. They play a crucial role in fields such as fluid mechanics, heat transfer, structural analysis, and electrical circuits. 				
	 Apply methods of general and particular solutions to ordinary differential equations. Formulation of a mathematical problem, mathematical formulation and use of mathematical methods in solving. Find the Laplace transform of a function from the definition of a Laplace transform. Find the Laplace transform of derivatives and integrals. 				
	The Indicative Contents of a Mathematics module will depend on the level and scope of the course. However, some common topics that may be covered in a mathematics				
Indicative Contents	 module include: Arithmetic: Basic mathematical operations such as addition, subtraction, multiplication, and division. Algebra: The study of mathematical symbols and the rules for manipulating these symbols to solve equations and represent real-world situations. Geometry: The study of shapes, sizes, positions, and measurements of objects in space. Calculus: The study of mathematical concepts such as limits, derivatives, and integrals. Number theory: The study of properties of numbers and their relationships with each other. Overall, the Indicative Contents of a Mathematical concepts and their applications in various fields of study. 				

Learning and Teaching StrategiesStrategiesThe main strategy that will be adopted in delivering this module is to
encourage students' participation in the exercises, while at the same time
refining and expanding their critical thinking skills. This will be achieved
through classes, interactive tutorials and by considering type of simple
experiments involving some sampling activities that are interesting to the
students.

Student Workload (SWL)				
Structured SWL (h/sem)78Structured SWL (h/w)6				
Unstructured SWL (h/sem)	72	Unstructured SWL (h/w)	4	
Total SWL (h/sem) 150				

	Module Evaluation					
		Time/Nu mber	Weight (Marks)	Week Due	Relevant Learning Outcome	
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 10 and 11	
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7	
assessment	Projects / Lab.	1	10% (10)	Continuous		
	Report	1	10% (10)	13	LO # 5, 8 and 10	
Summative Midterm Exam		2hr	10% (10)	7	LO # 1-7	
assessment Final Exam		3hr	50% (50)	16	All	
Total assessment 100% (100% (100 Marks)			
	Delivery Plan (Weekly Syllabus)					
Material Covered						
Week 1 Week 2 Week 3Ordinary differential Equations: First order (variables separable, homogeneous, linear, Bernoulli and exact). Second order (Homogeneous and non-homogeneous). Higher order differential equations						

Week 4	
Week 5	Partial Differentiation: Function of two or more variables, Partial derivatives, Directional
Week 6	derivative, Gradient, divergence, curl, Tangent plane and normal line, Maxima, minima & saddle point.
Week 7	
Week 8	Lonloss Transform: Unit stan function Commo function Definition of L.T. and Properties
Week 9	Laplace Transform: Unit step function, Gamma function, Definition of L.T. and Properties, Inverse Laplace Transform, partial fractions, solution of differential equations using Laplace
Week 10	transform.
Week 11	Sequences and series: Sequences, convergence, Series, geometric series, n th partial sum, test
Week 12	of convergence, alternating series, Power and Taylor's series.
Week 13	
Week 14	Fourier Series: Periodic functions, Fourier series, Even and odd functions, Half – Range
Week 15	expansions, Complex notation for Fourier series.
Week 16	Preparatory week before the final Exam

Learning and Teaching Resources				
	Text	Available in the Library?		
Required Texts	Erwin Kreyszig, "Advanced Engineering Mathematics", 10 th Ed.	Yes		
Recommended Texts	 George B. Thomas Jr., "CALCULUS", 14th Ed Schaum's Outline of College Mathematics, Fourth Edition Mary Attenborough, "Mathematics for Electrical Engineering and Computing", 1st Ed. 	No		
Websites	Topics in a Calculus -Wolfram Mathworld			

Group	Grade	Marks (%)	Definition	
	A - Excellent	90 - 100	Outstanding Performance	
Success Crown	B - Very Good	80 - 89	Above average with some errors	
Success Group (50 - 100)	C - Good	70 - 79	Sound work with notable errors	
(50 - 100)	D - Satisfactory	60 - 69	Fair but with major shortcomings	
	E - Sufficient	50 - 59	Work meets minimum criteria	
Fail Group	FX – Fail	(45-49)	More work required but credit awarded	
(0 – 49)	F — Fail	(0-44)	Considerable amount of work required	
Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full				

mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.