Course Description Form

1. Course Name:					
Neural Networks					
2. Course Code:					
WBM-52-07					
3. Semester / Year:					
Semester					
4. Description Preparation Date:					
2025-03-19					
5. Available Attendance Forms:					
presence in the classroom					
6. Number of Credit Hours (Total) / Number of Units (Total)					
30 Hours / 2 Units					
7. Course administrator's name (mention all, if more than one name)					
Name: Saad M. Sarhan					
Email: saad.mah@uowa.edu.iq					
8. Course Objectives	-				
Course Objectives A neural network is a method in artificial intelligen	ce that				
the human brain. This course provides general intro-	lifed by				
fundamental concents of artificial neural system ty	mes of				
learning systems, training and testing application	s. and				
application of neural network system in medicine.	0,				
9. Teaching and Learning Strategies					
Strategy The goal of the neural network approach was to create					
a computational system that could solve problems like a huma	ı brain.				
Neural networks have supported diverse tasks, including computer					
vision, speech recognition, machine translation, social network					
filtering, playing board and video games, and medical diagnosis	5.				
10. Course Structure					
Week Hours Required Unit or subject name Learning Evaluation	tion				
Learning method metho	d				
Outcomes					

1

1 +2+3	4	Introduction	Introduction to the biological neu networks and neurons, comparati petween biological and artificial neuron	Lectures presented PDF format	Daily exams + homework assignments + monthly exams
4+5+6	4	artificial neural system	Fundamental concepts of artific neural system, models of artific neural system, feed forward network, examples,	Lectures presented in PDF format	Daily exams homework assignments monthly exams
6+7	4	Feedback network	Feedback network, examples, neural processing, learning and adaptation,	Lectures presented in PDF format	Daily exams homework assignments monthly exams
8+9	4	Input data	Input: Data preprocessing, Feature scaling and Normalization, Feature Selection, Optimization,	Lectures presented in PDF format	Daily exams homework assignments monthly exams
10 +11	4	Output data	Output: Measuring performance, Using a validation set, Training and Testing, Cross validation	Lectures presented in PDF format	Daily exams homework assignments monthly
12	4	Learning Methods	Supervised and unsupervised learning, KNN, LDA, and SVM Classifiers	Lectures presented in PDF format	Daily exams homework assignments monthly
13	4	Learning Rules	Neural network learning rule, Hebbian, perceptron, delta, winner, correlation, out star learning rules	Lectures presented in PDF format	Daily exams homework assignments monthly
14	4	Types of networks	Types of network, single layer network, multilayer network, advantage of neural network, limitations of neural network	Lectures presented in PDF format	Daily exams homework assignments monthly
15	4	Training of networks	Training of neural network , back propagation training, application	Lectures presented in PDF format	Daily exams homework assignments monthly

Daily exams with practical and scientific questions.

^[2] Participation scores for difficult competition questions among students

I Establishing grades for environmental duties and the reports assigned to them

I Semester exams for the curriculum, in addition to the mid-year exam and final exam

12. Learning and Teaching Resources

Required textbooks (curricular books, if any)	Neural networks and learning machines, th		
	edition, Simon Haykin		
	Neural networks theory, Alexander I. Galushkin		
Main references (sources)	• College library to obtain additional sources for		
	academic curricula		

	• Check scientific websites to see re developments in the subject			
Recommended books and references (scientific	All reputable scientific journals that are related			
journals, reports…)	the broad concept of neural networks			