Course Description Form

1. Course Name:

Renewable energy

2. Course Code:

MPAC407

3. Semester / Year:

Annual (2024-2025)

4. Description Preparation Date:

Beginning of the academic calendar (2024-2025)

5. Available Attendance Forms:

Lectures + Lab

6. Number of Credit Hours (Total) / Number of Units (Total)

Theoretical (60) - Practical (30) / 5 Units

7. Course administrator's name (mention all, if more than one name)

Name: Hassan Talib Hashem

Email: hasanth2030@uowa.edu.iq

8. Course Objectives

Course Objectives

- 1. Expanding the student's knowledge through his introduction to new sources of energy other than traditional sources. The primary objective of the course lies in the importance of renewable energy and its applications, which has become one of the most important fields proposed in the twenty-first century for economic and environmental reasons, and in the importance of obtaining renewable (sustainable) and clean energy as a guarantee for the present and security for the future.
- Getting to know renewable energy sources and how to benefit from them to obtain energy and learn about the various application systems associated with those sources.
- Students can benefit from this course in their field of work as engineers in the field of refrigeration and air conditioning and include

- in general education curricula concepts about preserving the environment and using clean and renewable energy.
- 4. Studying traditional energy sources, sources of energy consumption, the world's energy needs, as well as environmental problems related to the use of traditional energies and studying ways and methods to reduce energy consumption.
- Knowledge of the basics of various renewable energy sources and the technologies required for associated energy systems.
- 6. Studying the types of renewable energy, its working principle, properties, applications, development prospects, and explaining the importance of using such energies from an environmental and economic perspective.
- 7. Providing students with scientific and applied research skills.

9. Teaching and Learning Strategies

Strategy

- 1. Theoretical lectures
- 2. Practical application and laboratory experiments
- 3. Discussions, workshops and seminars
- 4. Using modern presentation and teaching methods
- 5. Field visits and professional training
- 6. Review the latest published research in the field of renewable energy
- 7. Self-education

10. Course Structure

Week	Hours	Required Learning	Unit or subject	Learning	Evaluation
		Outcomes	name	method	method
1	3	Knowledge of renewable energy sources and their applications, and identification of environmental problems resulting from the use of traditional fuels	General introduction to renewable energy Renewable energy sources and applications Renewable Energy and environmental problems (Acid rain, Ozone layer depletion, Global climate change, Nuclear hazards)	1. Theoretical lectures 2. Practical application and laboratory experiments 3. Discussions, workshops and seminars 4. Using	 Daily and oral tests Monthly tests Practical tests Reports Extracurricular activities Projects Annual tests
2	3	How to calculate solar time equation	The sun Reckoning of time (the equation of time	modern presentation	

			and longitude correction)	and teaching methods	
3	3	Calculating solar angles required for solar energy applications	Solar angles (declination, hour angle, solar altitude angle, solar azimuth angle, Sunrise and sunset times and day length, incidence angle)	5. Field visits and professional training 6. Review the latest published research in	
4	3	Calculating solar radiation incident on different surfaces	Extraterrestrial solar radiation, Atmospheric attenuation, Terrestrial irradiation, Total radiation on tilted surfaces.	the field of renewable energy 7. Self- education	
5	3	Knowing the types and characteristics of fixed solar collectors	SE collectors Stationary collectors (Flat-Plate Collectors, Compound Parabolic Collectors, Evacuated Tube Collectors)		
6	3	Knowing the types and characteristics of tracking solar collectors	Sun-tracking concentrating collectors (Parabolic Trough Collectors, Fresnel collectors, Parabolic Dish Reflectors, Heliostat Field Collectors)		
7	3	Learn about the characteristics and advantages of solar heating systems	Solar water heating systems Passive systems (Thermosiphon systems, Integrated collector storage)		
8	3	Know the characteristics of features Direct and indirect heating systems	Active systems (Direct Circulation Systems, Indirect Water Heating Systems, Pool Heating Systems)		
9	3	Learn about renewable energy storage systems	Heat storage systems (Air System Thermal Storage, Liquid System Thermal Storage, and		

			Thormal Analysis of		
			Thermal Analysis of Storage Systems).		
10	3	Learning how to	Module and array		
10	3	design the module	design (module		
		and array and know	`		
		•			
		the auxiliary	Design)		
		devices and	Differential		
		equipment in	temperature		
		renewable energy	controller, Placement		
		systems	of Sensors		
11	3	Calculating the	Hot water demand		
		amount of hot water	Practical		
		required and	considerations		
		knowing the	(pipes, supports,		
		practical	insulation, pumps,		
		requirements for	valves, and		
		renewable energy	instrumentation).		
		systems			
12	3	Calculating the	Solar Space Heating		
14	3	heating and cooling	and Cooling		
		load of buildings	Calculation of heat		
		Todd of buildings	load		
12	3	Heating and cooling	Solar space heating		
13	3	buildings with solar	and cooling (Space		
			heating and service		
		energy			
			hot water, Air		
			systems, Water		
			systems, Location of		
			auxiliary heater,		
			Heat pump systems)		
			Solar cooling		
			(Adsorption units,		
			Absorption units)		
			Solar cooling with		
			absorption		
			refrigeration		
14	3	Learn about solar	Industrial Process		
		heating processes	Heat (Solar industrial		
		for industrial	air and water		
		purposes	systems, Solar steam		
			generation systems)		
			Chemistry		
			Applications		
			(Reforming of fuels,		
			Fuel cells, Materials		
			processing, Solar		
			detoxification)		
1 ୮	2	Vnoving the types	′		
15	3	Knowing the types,	Solar Dryers (Active		
		features and	Solar Energy Dryers,		
		characteristics of	Passive Solar Energy		
	1		Dryers	,	

16	3	solar dryers and greenhouses Knowledge of the types, features and characteristics of water desalination systems and solar desalination processes	Greenhouses and Greenhouse materials. Solar Desalination Systems, Desalination processes Direct collection systems (Classification of	
17	3	Learn about solar	Solar Distillation Systems, Performance of Solar Stills) Solar cells, Structure	
1/	J	cells, their working principle, and the components of the solar electrical generation system	of Photovoltaic PV System	
18-19	3	Knowledge of the components and characteristics of the solar generation system and the hybrid system	Design of PV system Hybrid PV/T systems and applications	
20	3	Knowledge of the components, characteristics and working principle of solar thermal electricity generation systems	Solar Thermal Power Systems (Parabolic trough collector systems, Power tower systems)	
21	3	Knowledge of the components, characteristics and working principles of dish collector systems and solar ponds	Solar Thermal Power Systems (Dish systems, Solar ponds)	
22	3	Learn about the basics of wind energy, wind turbines, and the aerodynamics of rotors and wind turbines	Introduction to Wind Energy Power available in the WE Wind turbine WT power and torque Classification of WTs (Horizontal axis WTs, Vertical axis WTs)	

			Chamataristic
			Characteristics of wind rotors
			Aerodynamics of WTs (Airfoil,
			,
			Aerodynamic theories)
22	2	Know how to	,
23	3		Rotor design - Rotor
		design a wind turbine rotor and	performance Analysis of wind
			_
		how to analyze	data
24	2	wind data	Wind
24	3	Learn the	Wind energy
		characteristics and	conversion systems
		advantages of wind	Wind electric
		conversion systems	generators (Tower,
		and wind generators	Rotor, Gear box,
			Power regulation,
			Safety brakes,
			Generator)
			Wind farms,
			Offshore wind farms
			Wind pumps - Wind
			water heater
25	3	Know the	Performance of wind
		characteristics of	energy conversion
		wind energy	system
		conversion, power	Power curve of wind
		curve, and capacity	turbine
		factor in wind	Capacity factor
		energy	
26	3	Learn about power	Introduction, Water
		generation from	Cycle
		water and water	Water Turbines
	<u> </u>	turbines	
27	3	Identify the	Hydropower Plants
= -		characteristics,	(Run - of - River
		features and	Power Plants,
		working principle	Storage Power
		of hydropower	Plants, Pumped -
		stations	Storage Power
			Plants)
			system design
28	3	Knowledge of	Tidal Power Plants,
20]	bioenergy and its	Wave Power Plants
		use in heat and	wave rower riants
		electricity	
		I -	
20	2	generation plants Learn about	Introduction to
29	3		
		geothermal power	bioenergy (biomass,
		plants, their	biogas, biofuel)
	1	characteristics and	

		the principle of their	Biomass Heating	
		operation	(Wood as a Fuel,	
			Fireplaces and	
			Closed Wood	
			burning Stoves,	
			Wood Pellet	I
			Heating)	
			Biomass Heat and	
			Power Plants	
30	3	Identify tidal	Introduction to	
		energy and wave	geothermal energy	
		energy, their	Geothermal Plants	
		characteristics, and	(Geothermal Heat	
		their principle of	Plants, Geothermal	
		operation	Power Plants),	I
			Geothermal Heat	
			pump	

11. Course Evaluation

Distributing the score out of 100 according to the tasks assigned to the student such as daily preparation, daily oral, monthly, or written exams, reports etc

12. Learning and Teaching Resources

Required textbooks (curricular books, if any)	1- Soteris Kalogirou, 2009 "solar energy engineering – processes and systems "1st Ed. Elsevier Inc, USA 2- Sathyajith Mathew, 2006, "Wind Energy, Fundamentals, Resource Analysis and Economics ", Springer, Netherlands. 3- Volker Quaschning, 2010," Renewal energy and climate change "John Wiley a Sons, Ltd.
Main references (sources)	
Recommended books and references	
(scientific journals, reports)	
Electronic References, Websites	