

MODULE DESCRIPTOR FORM

Module Information					
Module Title		MATHEMATICS II	O ERIA	Module Delive	ry
Module Type		BASIC	- 1	⊠ The	ory
Module Code	11	ENG023			cture
ECTS Credits	6			Lat	o torial
SWL (hr/sem)	150				nctical ninar
Module Level		1 Semester of D		of Delivery	2
Administering D	epartment	Civil Engineering	College	Engineering	
Module Leader	Zahraa Khalil	Hussein	e-mail	Zahraa.khaleel@uo	wa.edu.iq
Module Leader's Acad. Title		Assist.prof	prof 017 Module Lead Qualification		PhD
Module Tutor			e-mail	•	
Peer Reviewer Name			e-mail		
Review Committee Approval		2024/9/26	Version N	umber 1	

Relation With Other Modules					
Prerequisite module MATHEMATICS I Semester 1					
Co-requisites module	None	Semester			

Module	Module Aims, Learning Outcomes and Indicative Contents				
Module Aims	The aims of a mathematics module are to provide students with an understanding of mathematical concepts, skills, and techniques that can be applied to a range of real-world problems. This includes topics such as An introductory class in the theory and techniques of differentiation and integration of algebraic and trigonometric functions. Additionally, the module aims to prepare students for future academic and professional pursuits that require mathematical proficiency				
Module Learning Outcomes	 On successful completion of this module, students will be able to: Find the domain and range of a function and graphs. Evaluate limits, and determine continuity and differentiability offunctions. Apply rules of calculus to solve engineering problems including differential equations. Differential calculus, these concepts are used to analyze rates of change,optimization problems, and the behavior of functions in engineering applications. Integration: Table of integrals, Rules of integration, Definite integrals,Area bounded by curves, Integration by parts, Integration by substitution and using partial fractions. Express and evaluate a double and triple integral in terms of the Cartesian. Calculate area, volume, and surface area of integral. Application of Integration: Centres of mass, Moments of inertia. 				
Indicative Contents	 The Indicative Contents of a Mathematics module will depend on the level andscope of the course. However, some common topics that may be covered in a mathematics module include: 1- Arithmetic: Basic mathematical operations such as addition, subtraction, multiplication, and division. 2- Algebra: The study of mathematical symbols and the rules for manipulatingthese symbols to solve equations and represent real-world situations. 3- Geometry: The study of shapes, sizes, positions, and measurements of objectsin space. 4- Calculus: The study of mathematical concepts such as limits, derivatives, and integrals. Overall, the Indicative Contents of a Mathematics module aims to provide students with a comprehensive understanding of mathematical concepts and their applications in various fields of study. 				

Learning and Teaching Strategies					
	The main strategy that will be adopted in delivering this module is to encourage				
	students' participation in the exercises, while at the same time refining and				
Strategies	expanding their critical thinking skills. This will be achieved through classes,				
	interactive tutorials and by considering type of simple experiments involving				
	some sampling activities that are interesting to the students.				

Student Workload (SWL)					
Structured SWL (h/sem)	87	Structured SWL (h/w)	6		
Unstructured SWL (h/sem)	80	Unstructured SWL (h/w)	2		
Total SWL (h/sem)	105				

OFWARITHA

Module Evaluation						
		Time/ Number	Weight (Marks)	Week Due	Relevant Learning Outcome	
	Quizzes	2 2	10% (10)	5 , <mark>1</mark> 0	LO # 1, 201, and 00	
Formative	Assignments	02	10% (10)	[©] 2, <mark>1</mark> 2	LO # 3,4; 6, and 7	
assessment	Projects / Lab.	1	10% (10)	Conti <mark>nu</mark> ous		
	Report	1	10% (10)	13	LO # 5, 8 and 10	
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-7	
assessment	Final Exam	3hr 🕤	50% (50)	16	All	
Total assessn	ient		100%(100)			
و ر ف الالباء						

_							
	Delivery Plan (Weekly Syllabus)						
		Material Covered					
_							
	Week 1	Functions: Domain and Range, Functions and their graphs, Trigonometric Functions.					
	Week 2						
		Limits and Continuity: Limit of a Function and Limit Laws, One-Sided					
	Week 3	3 LimitsContinuity, Limits Involving Infinity, Asymptotes of Graphs.					

Week 4 Week 5 Week 6	Derivatives : Tangent Lines and the Derivative at a Point, The Derivative as a Function,Differentiation Rules, Derivatives of Trigonometric Functions, The Chain Rule, ImplicitDifferentiation, Linearization and Differentials.
Week 7	Applications of Derivatives: Extreme Values of Functions, The Mean Value Theorem,
Week 8	Monotonic Functions and the First Derivative Test, Concavity and Curve Sketching,
Week 9	AppliedOptimization, Antiderivatives
Week 10	
Week 11	Integrals: The Definite Integral, The Fundamental Theorem of Calculus, Indefinite
Week 12	Integralsand the Substitution Method, Definite Integral Substitutions and the Area Between Curves.
Week 13	Applications of Definite Integrals: Volumes using Cross-Sections, Volumes using
Week 14	Washerand Cylindrical Shells methods, Arc Length, Areas of Surfaces of Revolution,
Week 15	Work and Fluid Forces, Moments and Centers of Mass.
Week 16	Preparatory week before the final Exam

Learning and Teaching Resources				
	Text	Available in the Library?		
Required Texts	George B. Thomas Jr., "CALCULUS", 14th Ed	Yes		
Recommended Texts	 Erwin Kreyszig, "Advanced EngineeringMathematics", 10th Ed. Schaum's Outline of College Mathematics, FourthEdition. Mary Attenborough, "Mathematics for Electrical Engineering and Computing", 1st Ed. 	No		
Websites	Topics in Calculus -Wolfram Mathworld.			

APPENDIX:

GRADING SCHEME					
Group	Grade	التقدير	Marks (%)	Definition	
	A - Excellent	امىئباز	90 - 100	Outstanding Performance	
Success Group (50 - 100)	B - Very Good	ا جند عله 80 - 89 Above average with some er		Above average with some errors	
	C - Good	ختر	70 - 79	Sound work with notable errors	
	D-Satisfactory	متوسط	60 - 69	Fair but with major shortcomings	
	E - Sufficient	مۇبىرل	50 - 59	Work meets minimum criteria	
E-1 C	FX – Fail	ر اسب)قىږد	(45-49)	More work required but credit awarded	
Fail Group (0 – 49)		المعالجة(
	F – Fail	راسب	(0-44)	Considerable amount of work required	
Note:		OFV	HA		

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

