

Ministry of Higher Education and Scientific Research - Iraq

University of Warith Al-Anbiyaa College of Engineering Civil Engineering Department

MODULE DESCRIPTOR FORM

Module Information					
Module Title	MATHEMATICS I I I Module Delivery				
Module Type		BASIC	1		
Module Code	11	ENG032		Theory lecture	
ECTS Credits		6	5-6	practical	
SWL (hr/sem)	150				
Module Level	3 7		Semester o	of Delivery 1	
Administering D	epartment	Civil engineering	College	Engineering	
Module Leader	Noor Ul-Huda	Kadhim Hussein	e-mail	nooralhuda@uowa.edu.iq	
Module Leader's Acad. Title		Assistant Lecturer	Module Le Qualificati	I M Sc	
Module Tutor	2017		e-mail		
Peer Reviewer N	iewer Name		e-mail		
Review Committee Approval 2024/9/26			Version Nu	umber 1	

Relation With Other Modules				
Prerequisite module	mathematics I I	Semester	2	
Co-requisites module	None	Semester		

Module	Aims, Learning Outcomes and Indicative Contents
Module Aims	The module aims to provide students with a solid understanding of the fundamental concepts and techniques of linear algebra. This includes the study of linear equations. Students will also learn how to apply these concepts to solve real-world problems in various fields such as engineering, physics, economics, and computer science. By the end of the module, students should be able to manipulate and analyze mathematical models using linear algebraic tools and communicate their findings effectively.
Module Learning Outcomes	On completion of this module, students are expected to be able to: 1. Differentiate functions using the chain rule, product rule, quotient rule, and differentiation formula. 2. Formulate and solve first, second and higher order differential equations by algebraic methods. 3. Apply Fourier series to solving ordinary differential equations. 4. Test a given series for convergence, Determine whether a given sequence converges or not. 5. Differential Equations: Ordinary differential equations (ODEs) and partial differential equations (PDEs) are extensively used to describe dynamic systems and phenomena in engineering. They play a crucial role in fields such as fluid mechanics, heat transfer, structural analysis, and electrical circuits. 6. Apply methods of general and particular solutions to ordinary differential equations. 7. Formulation of a mathematical problem, mathematical formulation and use of mathematical methods in solving. 8. Find the Laplace transform of a function from the definition of a Laplace transform. 9. Find the Laplace transform of derivatives and integrals.
Indicative Contents	The Indicative Contents of a Mathematics module will depend on the level and scope of the course. However, some common topics that may be covered in a mathematics module include: 1. Arithmetic: Basic mathematical operations such as addition, subtraction, multiplication, and division. 2. Algebra: The study of mathematical symbols and the rules for manipulating these symbols to solve equations and represent real-world situations. 3. Geometry: The study of shapes, sizes, positions, and measurements of objects in space. 4. Calculus: The study of mathematical concepts such as limits, derivatives, and integrals. 5. Number theory: The study of properties of numbers and their relationships with each other. Overall, the Indicative Contents of a Mathematics module aims to provide students with a comprehensive

understanding of mathematical concepts and their applications 3 in various fields of study.

Learning and Teaching Strategies				
Strategies	The main strategy that will be adopted in delivering this module is to encourage students' participation in the exercises, while at the same time refining and expanding their critical thinking skills. This will be achieved through classes, interactive tutorials and by considering type of simple experiments involving some sampling activities that are interesting to the students.			

Student Workload (SWL)				
Structured SWL (h/sem)	78 Structured SWL (h/w) 6.0			
Unstructured SWL (h/sem)	72 Unstructured SWL (h/w) 4		4	
Total SWL (h/sem)	150 OF ENGLA			

تقييم المادة الدراسية Module Evaluation					
14		Time/ Number	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	10%	[©] 5 an <mark>d</mark> 10	LO #1, 2, 10 and 11
Formative	Assignments	2	10%	2- <mark>12</mark>	LO # 3, 4, 6 and 7
assessment	Projects / Lab.	1 0	10%	Contin <mark>u</mark> ous	
	Report	1,0	10%	13	LO # 5, 8 and 10
Summative	Midterm Exam	2hr	10%	7	LO # 1-7
assessment	Final Exam	3hr	50%	16	All
Total assessment		100% (100 Marks)			

	Delivery Plan (Weekly Syllabus)				
	Material Covered				
Week 1	كابية المندسية				
Week 2	Ordinary differential Equations: First order (variables separable, homogeneous, linear,				
Week 3	Bernoulli and exact). Second order (Homogeneous and non-homogeneous). Higher order differential equations				
Week 4					
Week 5	Partial Differentiation: Function of two or more variables, Partial derivatives,				
Week 6	Directional derivative, Gradient, divergence, curl, Tangent plane and normal line, Maxima, minima & saddle point.				
Week 7					

وصف المقرر الدراسي

Week 8	Laplace Transform: Unit step function, Gamma function, Definition of L.T. and
Week 9	Properties, Inverse Laplace Transform, partial fractions, solution of differential
Week 10	equations using Laplace transform.
Week 11	Sequences and series: Sequences, convergence, Series, geometric series, nth partial sum,
Week 12	test of convergence, alternating series, Power and Taylor's series.
Week 13	Fourier Series: Periodic functions, Fourier series, Even and odd functions, Half -Range
Week 14	expansions, Complex notation for Fourier series
Week 15	expansions, complex notation for Fourier series
Week 16	

	Delivery Plan (Weekly Lab. Syllabus)				
	Material Covered				
Week 1					
Week 2					
Week 3	5 C 2 2				
Week 4					
Week 5					
Week 6	(00)				
Week7					

Learning and Teaching Resources				
	Text	Available in the Library?		
Required Texts	Erwin Kreyszig, "Advanced Engineering Mathematics", 10th Ed.	yes		
Recommended Texts	1. George B. Thomas Jr., "CALCULUS", 14th Ed 2. Schaum's Outline of College Mathematics, Fourth Edition 3. Mary Attenborough, "Mathematics for Electrical Engineering and Computing", 1st Ed.	No		
Websites	Topics in a Calculus -Wolfram Mathworld			

وصف المقرر الدراسي

APPENDIX:

Note:

GRADING SCHEME						
Group	Grade	التقدير	Marks (%)	Definition		
	A - Excellent	امتياز	90 - 100	Outstanding Performance		
g G	B - Very Good	جيد جدا	80 - 89	Above average with some errors		
Success Group (50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors		
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings		
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria		
Fail Group (0 -	FX – Fail	مقبول بقرار	(45-49)	More work required but credit awarded		
49)	F – Fail	راسب	(0-44)	Considerable amount of work required		

NB Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

