

Ministry of Higher Education and Scientific Research - Iraq

University of Warith Al-Anbiyaa College of Engineering Civil Engineering Department

MODULE DESCRIPTOR FORM

Module Information						
Module Title	STRENGTH OF MATERIALS I			Module Delivery		
Module Type	Core	251THEGE OF E	NGINEER	Theory		
Module Code	CIV033			Lecture		
ECTS Credits	5					
SWL (hr/sem)	125					
Module Level		3	Semester of I	Delivery	1	
Administering Dep	partment	Civil Engineering	College	Engineering		
Module Leader	Wail Asim Mol	hammad	e-mail	wael.essam@uowa.ed	u.iq	
Module Leader's A	Acad. Title	Asst. Prof.	Module Lead	er's Qualification	PHD	
Module Tutor		2017	e-mail			
Peer Reviewer Name			e-mail			
Scientific Committee Approval Date		2024/9/26	Version Num	ber 1		

Relation With Other Modules				
Prerequisite module	Engineering Mechanics	Semester	2	
Co-requisites module	None	Semester		

Modul	e Aims, Learning Outcomes and Indicative Contents
	1. To develop problem solving skills and understanding of materials theory through the application of techniques.
	2. To understand the relation between the forces and the stresses.
Module Aims	3. This course deals with the basic concept of stresses and strains.
	4. This is the basic subject for all types of determinate structures.
	5. To understand the methods of solving stresses, strains, and deflections problems.
	1. Recognize how determinate structures works under various types of loading.
	2. List the various loading associated with determinate structures.
	3. Summarize what is meant by a stresses and strains.
Module Learning Outcomes	4. Describe the stress, the strains and the deflection.
	5. Define Hook's law.
	6. Identify the basic structural elements and their applications.
	7. Discuss the various properties of beams, columns.
	Indicative content includes the following Fundamental Principles of Mechanic:
	- Concept of force, units of force (SI units), Moment of force, conditions of
	equilibrium
	- Forces and Moments: Differential equilibrium relationship, Shear force and
	bending moment diagrams. Stresses.Concept of stresses, Stresses due to axial stress, Average shearing stress.
	Stresses in beams.
	- Bending stresses, Shearing stresses, Compound stresses Strains.
Indicative Contents	- Definition, Hook,s Low, Poisson,s ratio, Thermal strain, Stress-strain diagram,
	Linear relation between E,G and V. Transformation of stress and strain.
	- Equation for the transportation of plane stress, Principal stress, Mohr, s Circle
	of stress, Equations for transportation of plane strain Mohr, S Circle of stress.
	Torsion.
	- The torsion formula for solid circular shaft, Design of circular members in torsion. Angle, of twist of circular members in torsion. This, welled bellow
	torsion, Angle of twist of circular members in torsion, Thin- walled hollow members, Solid non circular sections. Deflection of Beams.
	memoris, sona non encatar sections. Denection of Deams.

Learning and Teaching Strategies				
Strategies	The main strategy that will be adopted in delivering this module is to encourage students' participation in the exercises, while at the same time refining and expanding their critical thinking skills. This will be achieved through classes,			
	interactive tutorials that are interesting to the students.			

Student Workload (SWL)					
Structured SWL (hr/sem)63Structured SWL (h/w)4					
Unstructured SWL (hr/sem)	62	Unstructured SWL (h/w)	4		
Total SWL (h/sem)	125				

Module Evaluation						
		Time/Nu mber	Weight (Marks)	Week Due	Relevant Learning Outcome	
	Quizzes	2	10% (10)	5,10	LO #1, 2, 10 and 11	
Formative assessment	Assignments	2	10% (10)	2,12	LO # 3, 4, 6 and 7	
	Projects / Lab.	1	10% (10)	All	All	
	Report	1	10% (10)	13	LO # 5, 8 and 10	
Summative	Midterm Exam	2hr	10% (10)	7	LO # 1-7	
assessment	Final Exam	3hr	50% (60)	16	All	
Total assessr	nent		100% (100 Marks)			

Delivery Plan (Weekly Syllabus)				
	Material Covered			
Week 1	Fundamental principles of mechanic: - Concept of force, units of force (SI units).			
Week 2	Fundamental principles of mechanic: - Moment of force, conditions of equilibrium.			
Week 3	Forces and moments: - Differential equilibrium relationship.			
Week 4	Forces and moments: Shear force and bending moment diagrams			
Week 5	Forces and moments: Shear force and bending moment diagrams			
Week 6	Forces and moments: Shear force and bending moment diagrams			
Week 7	Torsion: - The torsion formula for solid circular shaft, Design of circular members in torsion			
Week 8	Torsion: - Angle of twist of circular members in torsion.			
Week 9	Torsion: - Thin- walled hollow members, Solid non-circular			
Week 10	Stresses: - Concept of stresses, Stresses due to axial stress.			
Week 11	Stresses: - Stresses due to axial stress.			
Week 12	Stresses: - Average shearing stress, Thin-walled pressure vessels.			
Week 13	Stresses in beam: - Bending stresses			
Week 14	Stresses in beam: - Shearing stresses.			
Week 15	Stresses in beam: - Compound stresses.			
Week 16	Preparatory week before the final Exam			

Delivery Plan (Weekly Lab. Syllabus)				
	Material Covered			
Week 1				
Week 2				

Week 3	
Week 4	
Week 5	
Week 6	
Week 7	
Week 8	
Week 9	
Week 10	
Week 11	
Week 12	
Week 13	E WARITH
Week 14	EGE OF ENGINE
Week 15	C C C C C C C C C C C C C C C C C C C

	Learning and Teaching Resources				
	Text	Available in the			
	Text	Library?			
Required Texts	Strength of Materials, by: Singer.	Yes			
	1- Introduction to Mechanics of Solid, by: E. Popov.				
	2- Elements of Strength of Materials, by: Timoshenko				
Recommended	3- Mechanics of Materials by: Russell C. Hibbeler.	yes			
Texts	3- Mechanics of materials by: Ferdinand Beer et al.				
	4- Mechanics of Materials by: Manua Gere.				
	6- Strength of Materials, J. P. Den Hartog				
Websites					

كليــــة الهندســـــــة

Appendix :

Grading Scheme						
Group	Grade	التقدير	Marks (%)	Definition		
	A - Excellent	امتياز	90 - 100	Outstanding Performance		
Success Group	B - Very Good	جيد جدا	80 - 89	Above average with some errors		
(50 - 100)	C - Good	ختر	70 - 79	Sound work with notable errors		
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings		
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria		
Fail Group	FX – Fail	را <mark>سب (قيد المع</mark> الجة)	(45-49)	More work required but credit awarded		
(0 - 49)	F – Fail	راسب of En	(0-44)	Considerable amount of work required		

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

