

Ministry of Higher Education and Scientific Research - Iraq

University of Warith Al-Anbiyaa College of Engineering Civil Engineering Department

MODULE DESCRIPTION FORM

Module Information					
Module Title	STRENGTH OF MATERIALS II			Module Delivery	
Module Type	CORE	OF WAR	THAL	☑ Theory	
Module Code	CIV043	KPS COLLE	O SAINC	⊠ Lecture	
ECTS Credits	5			□ Lab	
SWL (hr/sem)	125			⊠ Tutorial	
Module Level		2	Semeste	er of Delivery	2
Administering Department Civil engineering		College	Engineering		
Module Leader	Wail Asim Mohammad		e-mail	wael.essam@uowa	.edu.iq
Module Leader'	s Acad. Title	Assist.prof.doctor	Module Qualific	Leader's	Ph.D.
Module Tutor		2011	e-mail		
Peer Reviewer Name			e-mail		
Scientific Committee Approval Date		20/10/2024	Version Number	10	

Relation with other Modules				
Prerequisite module Strength of Materials I Semester 1				
Co-requisites module None Semester				

Module Aims, Learning Outcomes and Indicative Contents					
Module Aims	 To develop problem solving skills and understanding of materials theory through the application of techniques. To understand the relation between the forces and the stresses. This course deals with the basic concept of stresses and strains. This is the basic subject for all types of determinate structures. To understand the methods of solving stresses, strains, and deflections problems. 				
Module Learning Outcomes	 Recognize how determinate structures works under various types of loading. List the various loading associated with determinate structures. Summarize what is meant by a stresses and strains. Describe the stress, the strains and the deflection. Define Hook's law. Identify the basic structural elements and their applications. Discuss the operations of sinusoid and phasors in an electric circuit. 				
Indicative Contents	8. Discuss the various properties of beams, columns. Indicative content includes the following. Strains: - Definition, Hook's Low, Poisson's ratio, Thermal strain, Stress-strain diagram, Linear relation between E,G and V. Transformation of stress and strain: - Equation for the transportation of plane stress, Principal stress, Mohr's Circle of stress, Equations for transportation of plane strain Mohr's Circle of stress. Deflection of Beams: - Governing differential equation for deflection of elastic beam, Double Integration method, Moment area method. Columns: - Natural of the beam column problem, Euler buckling load				

Learning and Teaching Strategies

Strategies

The main strategy that will be adopted in delivering this module is to encourage students' participation in the exercises, while at the same time refining and expanding their critical thinking skills. This will be achieved through classes, interactive tutorials that are interesting to the students.

Student Workload (SWL)				
الحمل الدراسي للطالب محسوب لـ ١٥ اسبوعا				
Structured SWL (h/sem)	62	Structured SWL (h/w)		
الحمل الدراسي المنتظم للطالب خلال الفصل	62	الحمل الدراسي المنتظم للطالب أسبوعيا	4	
Unstructured SWL (h/sem)	(2)	Unstructured SWL (h/w)	4	
الحمل الدراسي غير المنتظم للطالب خلال الفصل	62	الحمل الدراسي غير المنتظم للطالب أسبوعيا	4	
Total SWL (h/sem)	122			
الحمل الدر اسي الكلي للطالب خلال الفصل	132			

Module Evaluation					
		Time/Nu mber	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2 2	10% (10)	5, 10	LO #1, 2, 10 and 11
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7
assessment	Projects / Lab.	-			-
	Report	1	10% (10)	13	LO # 5, 8 and 10
Summative assessment	Midterm Exam	2 hr	10% (10)	7	LO # 1-7
ussessificit	Final Exam	2hr	60% (60)	16	All
Total assessn	nent		100% (100 Marks)		

Delivery Plan (Weekly Syllabus)			
	Material Covered		
Week 1	Strain : - Definition, Hook's Low, Poisson's ratio.		
Week 2	Strain: - Thermal strain.		
Week 3	Strain: - Stress-strain diagram.		
Week 4	Strain: - Linear relation between E,G and V		
Week 5	Transformation of stress and strain : -Equation for the transportation of plane stress.		
Week 6	Transformation of stress and strain: -Principal stress, Mohr s Circle of stress.		
Week 7	Transformation of stress and strain : -Equations for transportation of plane strain Mohr 's Circle of stress		
Week 8	Transformation of stress and strain : -Equations for transportation of plane strain Mohr · s Circle of stress		
Week 9	Deflection of beams : - Governing differential equation for deflection of elastic beam.		
Week 10	Deflection of beams : - Double Integration method, Multiple Equation Methods.		
Week 11	Deflection of beams : - Double Integration method, General Equation Method.		
Week 12	Deflection of beams: - Moment area method		
Week 13	Columns: -Natural of the beam column problem, Euler buckling load		
Week 14	Columns: -Natural of the beam column problem, Euler buckling load		
Week 15	Columns: -Natural of the beam column problem, Euler buckling load		
Week 16	Preparatory week before the final Exam		

	Delivery Plan (Weekly Lab. Syllabus)				
	Material Covered				
Week 1					
Week 2					
Week 3					
Week 4					
Week 5					
Week 6					

Learning and Teaching Resources				
	Text	Available in the Library?		
Required Texts	Strength of Materials, by: Singer.	Yes		
Recommended Texts	Introduction to Mechanics of Solid, by: E. Popov. Elements of Strength of Materials, by: Timoshenko Mechanics of Materials by: Russell C. Hibbeler. Mechanics of materials by: Ferdinand Beer et al. Mechanics of Materials by: Manua Gere. Strength of Materials, J. P. Den Hartog	yes		
Websites	18-3 OLL O RIVINO	•		

Appendix:

Grading Scheme						
مخطط الدرجات						
Group	Grade	التقدير	Marks (%)	Definition		
	A - Excellent	امتياز	90 - 100	Outstanding Performance		
Success	B - Very Good	ختر خدا	80 - 89	Above average with some errors		
Group	C - Good	ختر حتر	70 - 79	Sound works with notable errors		
(50 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings		
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria		
Fail Group (0 – 49)	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded		
	F – Fail	ر اسب	(0-44)	Considerable amount of work required		

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.