

Ministry of Higher Education and Scientific Research - Iraq

University of Warith Al-Anbiyaa College of Engineering Aircraft Engineering Department

MODULE DESCRIPTOR FORM

Module Information					
Module Title	Aircraft Engines I			Module Deliver	у
Module Type	Core	Like Collin	o Mac		
Module Code	AIE243		<u> </u>	Theory	
ECTS Credits	5			Lab	
SWL (hr/sem)	150		5 6		
Module Level		2	Semester of	Delivery	4
Administering Department		Aircraft Engineering	College E	ngineerin <mark>g</mark>	
Module Leader	Dr. Aws Akra	am Mahmood	e-mail a	aws@uowa.edu.iq	
Module Leader's	Acad. Title	Assist. Prof	Module Lead Qualification		Ph.D.
Module Tutor	None	2017	e-mail N	one	
Peer Reviewer N	lame		e-mail		
Review Commit	ttee Approval	01/01/2025	Version Num	1 ber 2024	

Relation With Other Modules					
Prerequisite module	AIE233	Semester	3		
Co-requisites module None Semester					
Module Aims, Learning Outcomes and Indicative Contents					
Module Aims					

جامعة وارث الأنبياء / كلية الهندسة

	1. Knowledge of the basics concepts in constructing and modifying piston				
	type aircraft engines.				
	2. Awareness of theoretical concepts dealing with the operating cycle				
	analysis and improving performance.				
	3. Providing the knowledge in the engine testing under various conditions				
	and identifying the evaluation parameters.				
	4. Understanding the concepts of engagement between the normal engines				
	with supercharging aiming higher outputs.				
	5. Providing the knowledge of the different types of compressors				
	encountered in turbocharged piston type aircraft engines.				
	encountered in turbocharged piston type ancrait engines.				
	1. Applying the concepts of thermodynamic cycles according to the second				
	law of thermodynamics.				
	2. Achieving the principle of energy conservation and the thermal balance				
	for different aircraft engines involving piston type.				
Module Learning	3. Complete awareness of the determination techniques of each kind of				
Outcomes	piston engines using basic formulation with testing procedures.				
	4. Applying the first and second law concepts to the thermodynamic				
	processes associated with the combustion systems in piston type engines.				
	5. Exploitation of the acquired knowledge in turbocharged engines				
	including description and cycle analysis of various kinds of compressors				
	involved.				
	Indicative content includes the following.				
	• Applying the governing laws in cycle analysis of piston type aircrafts.				
	Realizing thermodynamics processes and subject it to energy production				
	procedures. [13 hrs]				
	 Using the basic concepts of evaluation procedures on piston engines to 				
	formulate the tests conducted and providing the design parameters and				
Indicative Contents	selection procedure. [13 hrs]				
indicative contents	• Using the air-standard cycles to approximate the actual internal combustion				
	aircraft engines and driving the evaluation approach related to them. [13 hrs]				
	• Formulation for heat and work transfer in thermodynamic Fuel-Air cycles				
	and deriving the performance characteristics. [13 hrs]				
	• The engineering application of thermodynamics and fluid dynamics in				
	various processes in work and heat exchange in piston type engines. [13 hrs]				
	Applying the operational concepts of supercharging on the cycle analysis of				
	piston type aircraft engines. [11 hrs]				
	• Providing the essential knowledge in design and operating various kinds of				
	compressors used in turbocharged aircraft engines. [11 hrs]				

Learning and Teaching Strategies				
Strategies	 Class active discussions during comprehensive presentations. Home works and technical reports related to the explored course items. Quizzes and prepared exams to motivate student's realization. Organization of semester examinations. Laboratory oral discussions. 			

Student Workload (SWL)				
Structured SWL (h/sem) 63 Structured SWL (h/w) الحمل الدراسي المنتظم للطالب خلال الفصل			4	
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	87	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	5.8	
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	150			

Module Evaluation						
		Time/ Number	Weight (Marks)	Week Due	Relevant Learning Outcome	
	Quizzes	4	20% (20)	3, 6, 9 <mark>,</mark> 12	All	
Formative	Assignments	2	10% (10)	5, <mark>1</mark> 0	All	
assessment	Projects / Lab.	Lab. 4	10% (10)	Continuous	All	
	Report	-			-	
Summative	Midterm Exam	2 hrs	10% (10)	7	All	
assessment	Final Exam	3 hrs	50% (50)	16	All	
Total assessm	Total assessment 100% (100 Marks)					

Delivery Plan (Weekly Syllabus)				
	Material Covered			
Week 1	Introduction to the piston type aircraft engines			
Week 2	Two and four stroke operation cycles in reciprocating internal combustion engines.			
Week 3	Description of Otto standard cycles, and actual cycle spark ignition engine.			
Week 4	Deviation in operational characteristics between ideal and actual cycles.			

وصف المقرر الدراسي

Week 5	Basic parameters involved in testing piston type aircraft engines.		
Week 6	Energy balance and performance evaluation of piston type engines.		
Week 7	Constant speed and variable speed test procedures		
Week 8	Fuels used in aircraft engines along with combustion theory.		
Week 9	Calculation formulae of the heat of combustion of fuels.		
Week 10	Combustion process involved in piston type aircraft engines, exhaust gas analysis.		
Week 11	Concept of supercharging applied to piston type aircraft engines.		
Week 12	Turbocharging theory and analysis.		
Week 13	Methods and limitations applied to the turbocharged piston type aircraft engines.		
Week 14	Roots blower and its indicator diagram, cycle analysis of Roots blower.		
Week 15	Vane type compressor and its indicator diagram, cycle analysis of vane type compressor.		
Week 16	Final Exam		
RSITY EGE OF ENGINEER THE			

Delivery Plan (Weekly Lab. Syllabus)				
	Material Covered			
Week 1	Exp. 1: Study parts of the different engine types & determination of valve timing diagram.			
Week 2	Exp. 2: Diesel e <mark>n</mark> gine test at constant speed			
Week 3	Exp. 3: Diesel engine test at variable speed			
Week 4	Exp. 4: Petrol engine test at constant speed			
Week 5	Exp. 5: Petrol engine test at variable speed			
Week 6	Exp. 6: 2017			
Week 7	Exp. 7:			

Learning and Teaching Resources				
	Text	Available in the Library?		
Required Texts	J.B. Heywood, "Internal combustion engine fundamentals", McGraw-Hill publications, 1988.	Yes		
Recommended Texts	 R.J. Rajput, "A text book for internal combustion engines", 2nd Edition, Laximi publications Ltd, 2008. Sadhu Singh, "Internal combustion engines and gas 	No		

وصف المقرر الدراسي

جامعة وارث الأنبياء / كلية الهندسة

	turbines", Kataria & Sons Co, 2012
Websites	

APPENDIX:

GRADING SCHEME						
Group	Grade	التقدير	Marks (%)	Definition		
	A - Excellent	امتياز ع	90 - 100	Outstanding Performance		
g g	B - Very Good	جيد جدا	80 - 89	Above average with some errors		
Success Group (50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors		
(30 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings		
	E - Sufficient	ا مقبول	50 - 59	Work meets minimum criteria		
Fail Group	FX – Fail	مقبول بقرار	(45-49)	More work required but credit awarded		
(0-49)	F – Fail	راسب	(0-44)	Considerable amount of work required		
Note:		0-8	9	C I		

NB Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

