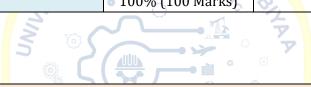


Ministry of Higher Education and Scientific Research - Iraq

University of Warith Al-Anbiyaa College of Engineering Aircraft Engineering Department

MODULE DESCRIPTOR FORM

Module Information						
Module Title	Engineering and	l Numerical Analysis	Module Deliver	у		
Module Type	Core Core				Theory	
Module Code	AIE241					
ECTS Credits	6			Lab		
SWL (hr/sem)	150		5	100 m		
Module Level		2	Semester o	of Delivery	4	
Administering Department		Aircraft Engineering	College	Engineering		
Module Leader	Ahmed Moha	med Merza	e-mail	ahmed.merza@uowa	a.edu.iq	
Module Leader's Acad. Title		Assist. Lec.	Module Lea Qualificati		MSc.	
Module Tutor None		2017	e-mail	None		
Peer Reviewer N	ame		e-mail			
Review Committee Approval01/01/2025Version Number2024						


Relation With Other Modules					
Prerequisite module	Prerequisite moduleAIE231Semester3				
Co-requisites module	Co-requisites module None Semester				
Module Aims, Learning Outcomes and Indicative Contents					

 To provide a course of high academic quality in Engineering and Numerical Analysis in a challenging and supportive learning environment that encourages students to reach their full potential, personally and academically. To provide a course that is suitable both for students aiming to pursue research and for students going into other careers. To provide an integrated system of teaching which can be tailored to the needs of individual students. To develop in students the capacity for learning and clear logical thinking. To continue to attract and select students of outstanding quality. To provide an intellectually stimulating environment in which students have the opportunity to develop their skills and enthusiasm to their full potential.
 Knowledge and Understanding: This Course will develop learners' ability to: Understand and use the relationships to define the principle of Engineering and Numerical analysis Select and apply operational skills in algebra, geometry, and trigonometry within mathematical contexts Select and apply skills in solving the non-linear and linear equations. Use numerical models Use engineering analysis reasoning skills to interpret information, select a strategy to solve a problem, and communicate solutions. To apply the numerical analysis on the data tables, which are obtained from experimental work. Subject-specific skills: It is expected that learners will develop the following: Broad, generic skills through this Course. Skills for Learning, and drawn from the main skills areas listed below. Skills for Life and Skills for Work These must be built into the Course where there are appropriate opportunities.
Indicative content includes the following. Engineering Analysis Laplace Transformations:

	Introduction. Definition of L.T., Definition of I.L.T. Examples. [8hrs]			
	Solution of differential equations using L.T:			
	Method of solution. Using L.T. for solving practical problems. [5hrs] Solution of 2 nd order D.E. using power series method:			
	Solution near the ordinary point. Solution near the singular point. [5hrs]			
	Solution of partial D.E:			
	Definition. Solution methods of P.D.E. Examples. [5hrs]			
	Using of separation method:			
	Definition of separation method. Examples. [5hrs]			
	Applications of the solution of P.D.E:			
	Solution of unsteady one-dimensional heat equation. Solution of vibrating			
	string. [5hrs]			
	Numerical Analysis			
	Solution of non-linear equations:			
	Simple iteration method, Examples. Newton –Raphson method, Derivation,			
	Square Roots, Reciprocal of any number. [5hrs]			
	Solution of simultaneously linear equations:			
	Definition and Methods of Solution. Direct methods: Gauss- Elimination,			
	Gaus <mark>s</mark> -Jordan Elimination. Indirect methods: Jacob's method. Gauss- Seidle method. [5hrs]			
	Numerical interpolation:			
	Linear interpolation. Quadratic interpolation. [5hrs]			
	Newton and Lagrange forms:			
	U <mark>si</mark> ng this method for equal segment and uneq <mark>u</mark> al segments. [5hrs]			
	Numerical differentiation			
	First derivative. Second derivative. [5hrs]			
	Numerical Integration			
	trapezoidal rule, Simpson Rule (1/3). Simpson Rule (3/8). [5hrs]			
	Curve fitting			
	linear Regression. Applications of linear regression. Polynomial curve fitting. [4hrs]			
	Solution of ordinary differential equations O.D.E.			
	Taylor series method. Simple Euler method. Runge-kutta method. [5hrs]			
	Learning and Teaching Strategies			
	All lectures reflect the higher values, purposes and principles. They offer			
	flexibility, provide more time for learning, focus on skills and applying to			
	learn, and scope for personalization and choice.			
	In this Course, and its component Units, there will be an emphasis on skills			
	development and the application of those skills. Assessment approaches will			
Strategies	be proportionate, fit for purpose and will promote best practices, enabling			
	learners to achieve the highest standards they can.			
	This course provides learners with opportunities to continue to acquire and			
	develop the attributes and capabilities of the four capacities, as well as skills			
	for learning, skills for life and skills for work.			

Student Workload (SWL)				
Structured SWL (h/sem)78Structured SWL (h/w)5				
Unstructured SWL (h/sem)	72	Unstructured SWL (h/w)	4.8	
Total SWL (h/sem)	150			

Module Evaluation						
		Time/	Weight (Marks)	Week Due	Relevant Learning	
		Number	weight (Marks)	week Due	Outcome	
	Quizzes	4	20% (20)	3,5, 7,10	LO #1, 2, 3,4,5 and 10	
Formative	Assignments	2	10% (10)	6, 11	LO # 3, 4, 7 and 9	
assessment	Projects / Lab.	Lab. 5	10% (10)	Continuous	All	
	Report	-	NARITI.	-	-	
Summative	Midterm Exam	<mark>2</mark> hrs.	10% (10)	9	LO # 1-7	
assessment	Final Exam	3 hrs.	50% (50)	16	All	
Total assessment		 100% (100 Marks) 	(P)			

Delivery Plan (Weekly Syllabus)				
Week	Material Covered			
Week 1	Laplace Transformations (L.T): Introduction. Definition of L.T. Examples.			
Week 2	Inverse Laplace Transformations (I.L.T.): Introduction. Definition of I.L.T. Examples.			
Week 3	Solution of differential equations using L.T: Method of solution. Using L.T. for solving practical problems Examples.			
Week 4	Solution of 2 nd order D.E. using power series method: Introduction. Solution near the ordinary point. Solution near the singular point.			
Week 5	Solution of partial D.E: Definition. Solution methods of P.D.E.			

	Examples.			
	Using of separation method:			
Week 6	Definition of separation method.			
	Examples.			
Maala 7	Applications of the solution of P.D.E:			
Week 7	Solution of unsteady one-dimensional heat equation.			
	Solution of vibrating string.			
	Solution of non-linear equations:			
Week 8	Introduction			
week o	Simple iteration method, Examples.			
	Newton – Raphson method, Derivation, Square Roots, Reciprocal of any number.			
	Applications.			
	Solution of simultaneously linear equations:			
Week 9	Definition and Methods of solution.			
	Direct methods: Gauss- Elimination, Gauss - Jordan Elimination.			
	Indirect methods: Jacob's method. Gauss- Seidle method.			
Week 10	Numerical interpolation:			
WEEK IV	Linear interpolation.			
	Quadratic interpolation.			
Week 11	Newton and Lagrange forms:			
	Using this method for equal segment and unequal segments Numerical differentiation			
Week 12	First derivative			
	Second derivative			
	Numerical Integration			
Week 13	Trapezoidal rule			
week 13	Simpson Rule (1/3)			
	Simpson Rule(3/8)			
	Curve fitting			
Week 14	Linear Regression			
	Applications of linear regression			
	Polynomial curve fitting			
	Solution of ordinary differential equations O.D.E.			
Week 15	Taylor series method 2017			
	Simple Euler method			
	Runge-kutta method			
Week 16	كليــــــــــــــــــــــــــــــــــــ			

Delivery Plan (Weekly Lab. Syllabus)			
	Material Covered		
Week	Week 1 Exp. 1: Solution of non-linear equations by using MATLAB program (Simple iteration method and Newton – Raphson method)		

Week 2	Exp. 2: Solution of linear equations by using MATLAB program (Gauss- Elimination and Gauss- Seidle method)
Week 3	Exp. 3: Newton forwards interpolation method for equal segment by using MATLAB program
Week 4	Exp. 4: Solution of Numerical Integration (Simpson Rule (1/3)) by using MATLAB program.
Week 5	Exp. 5: Solution of ordinary differential equations O.D.E. by using MATLAB program (Runge-kutta method).

Learning and Teaching Resources				
	Text	Available in the Library?		
Required Texts	1. Chapra C. S., "Numerical Methods for Engineers",Mc Graw-Hill, Inc., 2006.	Yes		
Recommended Texts	 د. حسن مجيد الدلفي ود. محمود عطاء الله مشكور, " التحليل الهندسي والعددي التطبيقي" دار انشر الوطنية, الطبعة الثانية 2016. 3. Erwin Kreyszig, "Engineering mathematics", McGRAW- HILL, 9th edition, 2006. 	Yes		
Websites				

APPENDIX:

GRADING SCHEME مخطط الدرجات						
Group Grade		التقدير	Marks (%)	Definition		
	A - Excellent	امتياز	90 - 100	Outstanding Performance		
a a	B - Very Good	جيد جدا	80 - 89	Above average with some errors		
Success Group (50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors		
(30 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings		
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria		
Fail Group	FX – Fail	مقبول بقرار	(45-49)	More work required but credit awarded		
(0 - 49)	F – Fail	راسب	(0-44)	Considerable amount of work required		
Note:						

NB Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

