

Ministry of Higher Education and Scientific Research - Iraq

University of Warith Al-Anbiyaa College of Engineering Aircraft Engineering Department

MODULE DESCRIPTOR FORM

Module Information						
Module Title	Strength of Mat	erials V EGE OF	Module Delive	гу		
Module Type	Core Core				Theory Lab	
Module Code	AIE242			-		
ECTS Credits	6				1	
SWL (hr/sem)	150					
Module Level		2	Semester of Delivery		4	
Administering Department		Aircraft Engineering	College	Engineering		
Module Leader Ghanim Kadh		nim Abdulsada	e-mail	Ghanim.sada@uov	va.edu.iq	
Module Leader's Acad. Title		Professor	Module Le Qualificat		Ph.D.	
Module Tutor None		2017	e-mail	None		
Peer Reviewer N	lame		e-mail			
Review Commit	ttee Approval	01/01/2025	Version N	umber 2024		

Relation With Other Modules					
Prerequisite module ** Semester					
Co-requisites module	Co-requisites module None Semester				
Module Aims, Learning Outcomes and Indicative Contents					

	 To assist students to understand the fundamental principles of all kind of Stresses. To develop problem solving skills and understanding of principles of Tensile test through the description of material behavior during the
Module Aims	 test. 3. To develop problem solving skills and understanding of thermal stresses through the application of techniques. 4. To understand how analysis of torsional shear stress and shear strain.
	 To comprehend how clarification of beam, and loading types. Draw the Shear force and Bending Moment diagrams in beams. Analyze the stresses on beam: bending stress, transverse shear
	 of Maryze the stresses of beam. bending stress, transverse shear stress, combine stress with drawing Mohr's circle. 7. To develop problem solving skills and understanding of Beam Deflection.
	8. Study the stress induced in relatively long Columns (Euler's Column Equation).
Module Learning Outcomes	 Enable the student to learn and understand the simple stress and simple strain The student should understand and be able to apply Hook's Laws. Enable the student to learn and solve the Statically Indeterminate Problems: The student should Know the thermal stress and thermal deformation connecting with simple stress. The student should Know the analysis of Circular shaft which is suffered from torsional shear stress. The student should Know how can find the Stresses and deformations in pressure vessels. The student should Know the beams and loading types on them. Draw the Shear force and Bending Moment diagrams in beams. The student should study the Study the stress induced in beams due to lateral loads and shear stress due to bending induced in beams. The student should understand and be able to apply Equation of elastic curve using double integration method and using Macaulay's Method. Enable the student to learn and understand Stresses at a Point and Complex Stresses and Graphical representation of stress at a point using Mohr's circle Enable the student to learn and understand stress induced in

	relatively long Columns (Euler's Column Equation).				
	Indicative content includes the following.				
	Part A - Introduction to Simple Stresses, Strains:				
	Study of simple stresses and strains. To know where the Hooke's law apply.				
	And solved Statically Indeterminate Problems: [9 hrs].				
	Thermal Strain and Stress:				
	Study the strain and stress induced due to temperature changes.				
	Solve statically indeterminate problems due to temperature changes. [5				
	hrs].				
	Part B - Torsion of Circular Shaft:				
	Study the pure to <mark>rsion</mark> for s <mark>olid</mark> and hollow circular shafts.				
	Study the stress induced du <mark>e to tor</mark> sion.				
	Study the angular deformation induced due to torsion. [10 hrs].				
	Part C- Pressure Vessels:				
	Stresses and deformations in pressure vessels. [5 hrs].				
	Part D-Beams:				
	Introduction to beams and loading types.				
	Dr <mark>a</mark> w the Shear force and Bending Moment diagrams in beams. [9 hrs].				
Indicative Contents	Bending Stresses in Beams:				
mulcative contents	St <mark>u</mark> dy the stress induced in beams due to latera <mark>l</mark> loads.				
	Ca <mark>l</mark> culating the second moment of area. [5 hrs].				
	Sh <mark>e</mark> ar Stress due to Bending in Beams:				
	Study the shear stress due to bending induced in beams. [5 hrs].				
	Deflection in Beams:				
	Equation of elastic curve using double integration method. Finding the elastic curve for complex loading using Macaulay's Method. [9				
	hrs].				
	Stresses at a Point and Complex Stresses:				
	Study the stresses at a point.				
	Basic principles for calculating the combined stresses at a point. [5 hrs].				
	كليهة الهندسي				
	Mohr's Circle:				
	Graphical representation of stress at a point using Mohr's circle.				
	Systematic procedure of graphical representation of stresses at a point				
	using Mohr's circle. [5 hrs].				
	Part E - Buckling of Columns:				

	Study the stress induced in relatively long Columns (Euler's Column Equation). Buckling for medium columns using Rankine method. [5 hrs].			
	Learning and Teaching Strategies			
Strategies	The main strategy that will be adopted in delivering this module is to encourage students' participation in the exercises, while at the same time refining and expanding their critical thinking skills. This will be achieved through classes, interactive tutorials and by considering type of simple experiments involving some sampling activities that are interesting to the students.			

OF WARITH Student Workload (SWL) Structured SWL (h/sem) Structured SWL (h/w) 78 5 0 72 Unstructured SWL (h/sem) Unstructured SWL (h/w) 4.8 Total SWL (h/sem) 150

L

Module Evaluation						
		Time/ Number	Weight (Marks)	Week Due	Relevant Learning Outcome	
	Quizzes	4	20% (20)	3,6 , <mark>9,</mark> 11	All	
Formative	Assignments	2	10% (10)	5, <mark>8</mark>	All	
assessment	Projects / Lab.	Lab. 4	10% (10)	Continuous	All	
	Report			J-3	-	
Summative	Midterm Exam	2 hrs.	10% (10)	7	All	
assessment	Final Exam	3 hrs.	50% (50)	16	All	
Total assessment			100% (100 Marks)			

Delivery Plan (Weekly Syllabus)				
	Material Covered			
Week 1	Stresses, Strains, Hooke's Law: Study of simple stresses and strains, to know where the Hooke's law apply			
Week 2	Statically Indeterminate Problems:			

	Basic principles for solving statically indeterminate Problems.				
	Thermal Strain and Stress:				
Week 3	Study the strain and stress induced due to temperature changes.				
	Solve statically indeterminate problems due to temperature changes				
Week 4	Torsion of Circular Shaft:				
	Study the angular deformation induced due to torsion.				
Week 5	Torsion of Circular Shaft:				
	Study the angular deformation induced due to torsion.				
Week 6	Pressure Vessels:				
	Stresses and deformations in pressure vessels.				
	Beams: S.F. and B.M. Diagrams:				
Week 7	Introduction to beams and loading types.				
Week 8	Beams: S.F. and B.M. Diagrams:				
	Draw the Shear force and Bending Moment diagrams in beams.				
We als 0	Bending Stresses in Beams: WARING				
Week 9	Study the stress ind <mark>uce</mark> d in beams due to lateral loads.				
	Calculating the sec <mark>ond</mark> moment of area.				
Week 10	Shear Stress due to Bending in Beams:				
	Study the shear stress due to bending induced in beams.				
Week 11	Deflection in Beams:				
week 11	Equation of ela <mark>s</mark> tic curve using double integration method.				
Week 12	Deflection in Beams:				
	Finding the ela <mark>s</mark> tic curve for complex loading using Macaulay's Method.				
Week 13	Stresses at a Point and Complex Stresses:				
WEEK 15	Study the stresses at a point.				
	Basic principle <mark>s</mark> for calculating the combined stresses at a p <mark>o</mark> int.				
	Mohr's Circle:				
Week 14	Graphical representation of stress at a point using Mohr's circle.				
	Systematic procedure of graphical representation of stresses at a point using Mohr's				
	circle.				
Week 15	Buckling of Columns:				
Heen 10	Study the stress induced in relatively long Columns (Euler's Column Equation).				
Week 16	Buckling for medium columns using Rankine method.				
week 10	Final Exam				

Delivery Plan (Weekly Lab. Syllabus)				
	Material Covered			
Week 1	Exp. 1: Tensile test			
Week 2	Exp. 2: Torsion test			

وصف المقرر الدراسى

Week 3	Exp. 3: Thick pressure vessel
Week 4	Exp. 4: Bending test
Week 5	Exp. 5:
Week 6	Exp. 6:
Week 7	Exp. 7:

	Learning and Teaching Resources					
	Text	Available in the Library?				
Required Texts	Hibbeler R.C., " <i>Mechanics of Materials</i> ", Prentice Hall, Eighth Edition, 2011.	Yes				
Recommended Texts	Hearn E.J., " <i>Mechanics of Materials</i> ", Butterworth, Third Edition, 1997.	Yes				
Websites						

APPENDIX:

GRADING SCHEME						
Group	Grade	التقدير	Marks (%)	Definition		
	A - Excellent	امتياز	90 - 100	Outstanding Performance		
a a	B - Very Good	جيد جدا	80 - 89	Above average with some errors		
Success Group (50 - 100)	C - Good	70 - 79		Sound work with notable errors		
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings		
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria		
Fail Group	FX – Fail	مقبول بقرار	(45-49)	More work required but credit awarded		
(0 - 49)	F – Fail	راسب	(0-44)	Considerable amount of work required		
Note:						

NB Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

