

Ministry of Higher Education and
Scientific Research - Iraq
University of Warith Al_Anbiyaa
Engineering Department
Refrigeration and Air Conditioning
Techniques Engineering

MODULE DESCRIPTION FORM

نموذج وصف المادة الدراسية

Module Information

معلومات المادة الدراسية

Module Title	<u>Heat Transfer</u>		
Module Type	<u>C</u>		
Module Code	<u>MPAC303</u>		
ECTS Credits	<u>8</u>		
SWL (hr/sem)	<u>200</u>		
Module Level	<u>3</u>	Semester of Delivery	<u>1</u>
Administering Department	Refrigeration and Air Conditioning Techniques.	College	Engineering
Module Leader	Audai Hussein	e-mail	audai.Hussein@uowa.edu.iq
Module Leader's Acad. Title	Professor	Module Leader's Qualification	Ph.D.
Module Tutor	None	e-mail	E-mail
Peer Reviewer Name	هندس	e-mail	
Scientific Committee Approval Date	<u>٣١/٠٨/٢٠٢٥</u>	Version Number	<u>1</u>

Relation with other Modules

العلاقة مع المواد الدراسية الأخرى

Prerequisite module	MPAC203, MPAC202	Semester	<u>3</u>
Co-requisites module	None	Semester	

Module Aims, Learning Outcomes and Indicative Contents أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية	
Module Aims	<ol style="list-style-type: none"> 1. To develop students' fundamental knowledge into Heat transfer principles. 2. To describe the physical principles and evolving technical capabilities of heat transfer 3. To explain the heat transfer mechanisms, conduction, convection, and radiation. 4. To describe the thermal resistance concept, conduction through multilayered plane wall, cylinders and spheres. 5. To describe the Heat transfer from finned surfaces, fin equation, fin Efficiency, fin effectiveness. 6. To explain the forced and natural convection heat transfer, boundary layer concepts. 7. To describe the kinds of heat exchangers, heat exchangers design methods. 8. To explain the heat transfer by radiation basic concepts.
Module Learning Outcomes	<p>Upon completion of the course, students should be able to:</p> <ol style="list-style-type: none"> 1. Use the information of heat transfer principles. 2. Identify the heat transfer mechanisms. 3. Recognize the forced and natural convection heat transfer. 4. Recognize the kinds of heat exchangers and design methods. 5. Recognize the heat transfer by radiation basic concepts. 6. Use the heat transfer principles in the practical applications.
Indicative Contents	<p>Indicative content includes the following:</p> <p>Heat transfer principles [16hrs].</p> <p>Introduction to heat transfer mechanisms, conduction, convection, and radiation [16hrs].</p> <p>Thermal resistance concept, conduction through multilayered plane wall, cylinders and spheres [28hrs].</p> <p>Heat transfer from finned surfaces, fin equation, fin Efficiency, fin effectiveness [16hrs].</p> <p>Forced and natural convection heat transfer, boundary layer concepts [28hrs].</p> <p>Heat transfer by radiation basic concepts [24hrs].</p>

Learning and Teaching Strategies

استراتيجيات التعلم والتعليم

Strategies	Assessment is based on hand-in assignments, written exam, Case study, Quizzes, seminars, Practical testing and Online testing.
-------------------	--

Student Workload (SWL)

الحمل الدراسي للطالب

Structured SWL (h/sem)	144	Structured SWL (h/w)	10
Unstructured SWL (h/sem)	56	Unstructured SWL (h/w)	6
Total SWL (h/sem)	200		

Module Evaluation

تقييم المادة الدراسية

		Time/Number	Weight (Marks)	Week Due	Relevant Learning Outcome
Formative assessment	Quizzes	4	20% (20)	3,6,10,14	LO #1,2,3,4,5,6
	Assignments	2	10% (10)	5, 12	LO # 2.3.4.5
	Seminar	1	10% (10)	12	LO # 1,6
Summative assessment	Midterm Exam	2 hr	10% (10)	10	LO # 1,2,3
	Final Exam	3hr	50% (50)	16	All
Total assessment			100% (100 Marks)		

Delivery Plan (Weekly Syllabus)

المنهاج الاسبوعي النظري محتوى كل اسبوع يجب ان يغطي الوقت المحدد

	Material Covered
Week 1	Introduction, Heat Transfer Mechanisms, Steady State general Heat Conduction equation in Rectangular, Cylindrical and spherical Coordinates.
Week 2	Thermal Resistance Concept, Conduction through Multilayered Plane Wall, Cylinders and Spheres.
Week 3	Overall Heat Transfer Coefficient, Critical Radius of Insulation. Thermal Contact Resistance.
Week 4	Heat transfer from finned surfaces, fin equation, fin Efficiency, fin effectiveness
Week 5	Transient Heat Conduction, (Lumped System Analysis) Two-dimensional Steady Heat Conduction, numerical method.
Week 6	Introduction to Heat Transfer by Convection, Review to the Fluid Flow.
Week 7	Non-Dimensional Group Numbers Analysis, Laminar and Turbulent flow.

Week 8	External Forced Convection (on Flat Plate), Boundary layer concept, Empirical Equations
Week 9	Internal Forced Convection (Laminar and Turbulent Flow), Empirical Equations.
Week 10	Natural Convection Heat Transfer, Empirical Equations.
Week 11	Introduction to Heat Exchangers, Kinds of Heat Exchangers
Week 12	The Overall Heat Transfer Coefficient, Fouling Factor, The Log Mean Temperature Difference (LMTD) Method
Week 13	Effectiveness- NTU method, Performance for Different Kinds of the Heat Exchangers.
Week 14	Heat Radiation, Introduction, Basic Concepts, Absorptivity, Reflectivity, and Transmissivity.
Week 15	Radiation Heat Transfer Between Two Black and Gray Surfaces.

Delivery Plan (Weekly Lab. Syllabus)

المنهاج الأسبوعي للمختبر

	Material Covered
Week 1	Calculation of thermal conductivity
Week 2	Calculation of heat transfer rate.
Week 3	Calculation of thermal contact resistance
Week 4	Heat transfer in long straight fins
Week 5	Estimating the convection heat transfer coefficient in fins
Week 6	Forced convection from a cylinder in a cross flow
Week 7	Free convection from a cylinder in free flow
Week 8	Parallel flow shell and tube heat exchanger performance
Week 9	Counter flow shell and tube heat exchanger performance
Week 10	Heat Transfer by Radiation

Learning and Teaching Resources

مصادر التعلم والتدریس

	Text	Available in the Library?
Recommended Texts	<ul style="list-style-type: none"> ➤ Yunus C. Cengel, "Heat and Mass Transfer", 6th Edition, Mc Graw-Hill Education, 2020. ➤ J. P. Holman "Heat Transfer", 10th Edition, Mc Graw-Hill Education, 2010. 	Yes

Grading Scheme

مخطط الدرجات

Group	Grade	التقدير	Marks (%)	Definition
Success Group (50 - 100)	A - Excellent	امتياز	90 - 100	Outstanding Performance
	B - Very Good	جيد جداً	80 - 89	Above average with some errors
	C - Good	جيد	70 - 79	Sound work with notable errors
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria
Fail Group (0 - 49)	FX - Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded
	F - Fail	راسب	(0-44)	Considerable amount of work required

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

أستاذ المادة
التاريخ : ٢٠٢٥-٠٨-٣١

رئيس القسم
أ.م.د محمد حسن عبود
التاريخ: ٢٠٢٥-٠٨-٣١

كلية الهندسة